Answer:
4204 K
Explanation:
Step 1: Data
<em>Given data</em>
- Density of uranium hexafluoride (ρ): 0.5820 g/L
- Pressure of uranium hexafluoride (P): 0.5073 atm
<em>Required data</em>
- Universal gas constant (R): 0.08206 atm.L/mol.K
- Molar mass of uranium hexafluoride (M): 352.02 g/mol
Step 2: Calculate the temperature of the gas
We will use the following expression derived from the ideal gas equation.
P × M = ρ × R × T
T = P × M/ρ × R
T = 0.5073 atm × (352.02 g/mol)/(0.5820 g/L) × (0.08206 atm.L/mol.K)
T = 4204 K
<span>Take a look at this periodic table.
You start in the left upper corner (1s) then you go to the right untill you can't go further, then you go 1 row down and start at the left again.
So the order will be 1s,2s,2p,3s,3p,4s,3d,4p... etc</span>
<span>(3) amina ........................</span>
Answer:
All elements in the same group of the periodic table have the same number of valence electrons. This made it possible to compare the valence of the alien elements to the valence of elements from our periodic table, and match the alien elements to the correct group. For example, our group 14 elements all have 4 valence electrons, so the alien element with 4 valence electrons had to be part of group 14 also.