Answer:
You would have 1.96 moles.
Explanation:
You are given 608 grams of calcium phosphate Ca₃(PO₄)₂.
Molar mass (M) is the amount of mass that a substance contains in one mole. This substance can be an element or a compound.
Since the molar mass of the compound Ca₃(PO₄)₂ is 310 g / mole, and taking into account the definition of molar mass, you can apply the following rule of three: if 310 grams of Ca₃(PO₄)₂ are contained in 1 mole, 608 grams of the compound in how many moles are present?

moles= 1.96
<u><em>You would have 1.96 moles.</em></u>
An energy transfer, with heat energy moving away from the equator
Answer:
It's coefficient to the front of each element that requires it.
Explanation:
It is coefficient to the front of each element or compound that requires it. Essentially you are multiplying the amount of atoms or compounds on one side to match the amount on the other side.
Answer:
the heat source must be greater than 100°C
the water must be permitted to evaporate quickly
the system must be sealed and become pressurized above atmospheric pressure
the vapor pressure must be kept below 760 mmHg
Explanation:
A superheated water is a dry form of steam in which hydrogen bonds that strongly binds the molecules of water has been overcome.
Superheated water finds application in a wide range of places. For example they are used for sterilization of clinical equipment.
- To produce steam or superheated water, the temperature of the source must be greater than the boiling temperature and less than the critical temperature at 374°C.
- Since superheated water is steam and steam is water in gaseous form. The water must be made to evaporate more quickly than it should condense back.
- High pressure and sealing the system helps to produce superheated water very fast.
- If the pressure between the vapor is kept low, water will boil faster.
the correct answer is feels slippery