<h2>
Answer: Infrared light</h2>
A dark nebula is a cloud of dust and cold gas, which does not emit visible light and hides the stars it contains.
These types of nebulae are composed mainly of the hydrogen they obtain from nearby stars, which is their fuel.
It is using infrared light that we can "observe" and analyze in detail what happens in the inner parts of these nebulae.
Answer:
However, the disadvantages are:
1. Many atimes for some motion prolems, free-body diagrams has to be drawn many times so to have enough equations to solve for the unknowns. This is not the same with energy conservation principles.
2. In situations where we need to find the internal forces acting on an object, we can't truly solve such problems using free-body diagram as it captures external forces. This is not the same with energy conservation principles.
Explanation:
Often times the ideal method to use in solving motion problem related questions are mostly debated.
Energy conservation principles applies to isolated systems are useful when object changes their positions in moving upward or downward converts its potential energy due to gravity for kinetic energy, or the other way round. When energy in a system or motion remains constant that is energy is neither created nor destroyed, it can therefore be easier to calculate other unknown paramters like in the motion problem velocity, distance bearing it in mind that energy can only change from one type to another.
On the other hand, free body diagram which is a visual representation of all the forces acting on an object including their directions has so many advantages in solving motion related problems which include finding relationship between force and motion in identifying the force acting on a body.
Angular frequency in radian per second for 20 vibrations in 10 seconds is 12.6 rad/s
<h3>What is Angular frequency?</h3>
Angular frequency is the number of vibrations in radian per second.
The total number of vibrations n is 20 and the time taken for these vibrations is 10 s
The frequency of the vibrations will be
f = 20 / 10 = 2 Hz
Angular frequency is related to the frequency as
ω = 2πf
ω=2π × 2
ω = 12.6 rad/s
Thus, the angular frequency is 12.6 rad/s.
Learn more about Angular frequency.
brainly.com/question/14244057
#SPJ
Uh so I'm no master at this subject, but all stuffs accelerate at 9.8 m/s squared. So you multiply the 9.8 and the 0.20 it's given for reasons unknown other than that's what I see in my notes... and that gives you 1.96 m/s squared.
As for B, I have no idea. I think you may multiply the 1.96 by 4. Tell me your thoughts and maybe we can work it out together