Answer:
the overall heat transfer coefficient of this heat exchanger is 1855.8923 W/m²°C
Explanation:
Given:
d₁ = diameter of the tube = 1 cm = 0.01 m
d₂ = diameter of the shell = 2.5 cm = 0.025 m
Refrigerant-134a
20°C is the temperature of water
h₁ = convection heat transfer coefficient = 4100 W/m² K
Water flows at a rate of 0.3 kg/s
Question: Determine the overall heat transfer coefficient of this heat exchanger, Q = ?
First at all, you need to get the properties of water at 20°C in tables:
k = 0.598 W/m°C
v = 1.004x10⁻⁶m²/s
Pr = 7.01
ρ = 998 kg/m³
Now, you need to calculate the velocity of the water that flows through the shell:

It is necessary to get the Reynold's number:

Like the Reynold's number is greater than 10000, the regime is turbulent. Now, the Nusselt's number:

The overall heat transfer coefficient:

Here

Substituting values:

Answer:
0
Explanation:
output =transfer function H(s) ×input U(s)
here H(s)=
U(s)=
for unit step function
output =H(s)×U(s)
=
×
=
taking inverse laplace of output
output=t×
at t=0 putting the value of t=0 in output
output =0
Answer:
Contaminated sharps should not be bent, recapped or removed.
Explanation:
Contaminated sharps are defined as "any contaminated object that can penetrate the skin including, but not limited to, needles, scalpels, broken glass, broken capillary tubes and exposed ends of dental wires".
Answer:
dislocations play an important role in controlling as
Explanation:
As dislocations plays an important role in the ductility, elasticity and plurality of materials
- The elastic and elastic deflections play a large role in their properties as the metallic materials, because the dislocation of a glass material does not play a major role in their properties.