<span><span>Dipole-dipole interactions , example: ammoni </span><span>forces, example: methane, CH4</span><span>Hydrogen bonding example: water, H2O </span></span>
109/8.56=12.7
50+12.7
V=62.7
Mass= Volume x Density so i divided the mass and density to get the volume. and afterwards i would just add it to the mass to get my final answer
One way of knowing that oxygen was the gas removed from the volume of air and not another is to know what the volume of air is made of first. When the composition of the volume of air is already identified, then next would be the process of separating these elements from each other and as to which is to be separated first. This would usually lead to knowing their masses, their boiling and freezing points, the temperatures at which they condense, and so on. This is to identify their differences to each other and use those differences to successfully separate those elements to each other.
Answer:
Investigating a data breach
Explanation:
A data breach usually involves data exfiltration over a computer network. the other options involve data being stored on a device locally which isn't volatile data like text messages, photos or rearranging data in defragmentation all of which does not require a network.
The formula for molality---> m = moles solute/ Kg of solvent
the solute here is NH₃ because it's the one with less amount. which makes water the solvent.
1) let's convert the grams of NH₃ to moles using the molar mass
molar mass of NH₃= 14.0 + (3 x 1.01)= 17.03 g/ mol
15.0 g (1 mol/ 17.03 g)= 0.881 mol NH₃
2) let's convert the grams of water into kilograms (just divide by 1000)
250.0 g= 0.2500 kg
3) let's plug in the values into the molality formula
molality= mol/ Kg---> 0.881 mol/ 0.2500 kg= 3.52 m