Answer:
If you know that that free fall acceleration g on the Moon is about 6 times less than on the Earth, it gives you the answer: on the Moon the same pendulum will have a period about √6≈2.45 longer than on the Earth.
Answer:
31.75 m/s
Explanation:
h = 41.7 m
Let the initial velocity of the second stone is u
Let the time taken to reach to the bottom by the first stone is t then the time taken by the second stone to reach the ground is t - 1.8.
For first stone:
Use second equation of motion

Here, u = 0, g = 9.8 m/s^2 and t be the time and h = 41.7
So, 41.7= 0 + 0.5 x 9.8 x t^2
41.7 = 4.9 t^2
t = 2.92 s ..... (1)
For second stone:
Use second equation of motion

Here, g = 9.8 m/s^2 and time taken is t - 1.8 = 2.92 - 1.8 = 1.12 s, h = 41.7 m and u be the initial velocity
.... (2)
By equation the equation (1) and (2), we get

u = 31.75 m/s
Answer:
11 m/s
Explanation:
Draw a free body diagram. There are two forces acting on the car:
Weigh force mg pulling down
Normal force N pushing perpendicular to the incline
Sum the forces in the +y direction:
∑F = ma
N cos θ − mg = 0
N = mg / cos θ
Sum the forces in the radial (+x) direction:
∑F = ma
N sin θ = m v² / r
Substitute and solve for v:
(mg / cos θ) sin θ = m v² / r
g tan θ = v² / r
v = √(gr tan θ)
Plug in values:
v = √(9.8 m/s² × 48 m × tan 15°)
v = 11.2 m/s
Rounded to 2 significant figures, the maximum speed is 11 m/s.