Answer:
The parallelogram is not rectangle because the sides of the parallelogram do not meet at right angles.
Step-by-step explanation:
Given the parallelogram with sides 20 and 21 units with diagonal length 28 units.
we have to tell it is a rectangle or not.
The given parallelogram is rectangle if the angle at vertices are of 90° i.e the two triangle formed must be right angles i.e it must satisfy Pythagoras theorem
=+
784=400+441=881
Not verified
∴ The sides of the parallelogram do not meet at right angles.
Hence, the parallelogram is not rectangle because the sides of the parallelogram do not meet at right angles.
Hope it helps
Mark as brainliest
Answer:
Option (1)
Step-by-step explanation:
By the inscribed angle theorem inside a circle,
"Measure of an inscribed angle is half the measure of the intercepted arc"
[m(arc AB)] = m(∠ABC)
m(arc AB) = 2[m(∠ABC)]
x = 2(41°)
x = 82°
Option (1) is the correct option.
If each of the 28 students made at least $25, you would multiply 28 and 25 together to obtain the least amount of money the class raised. That gets, 28x25 = 700. The class made at least $700.
Answer:
Ix - 950°C I ≤ 250°C
Step-by-step explanation:
We are told that the temperature may vary from 700 degrees Celsius to 1200 degrees Celsius.
And that this temperature is x.
This means that the minimum value of x is 700°C while maximum of x is 1200 °C
Let's find the average of the two temperature limits given:
x_avg = (700 + 1200)/2 =
x_avg = 1900/2
x_avg = 950 °C
Now let's find the distance between the average and either maximum or minimum.
d_avg = (1200 - 700)/2
d_avg = 500/2
d_avg = 250°C.
Now absolute value equation will be in the form of;
Ix - x_avgI ≤ d_avg
Thus;
Ix - 950°C I ≤ 250°C