Answer:

Explanation:
Hello!
In this case, given the relationship between velocity, wavelength and frequency:

By plugging in the given wavelength and frequency, we obtain the following speed:

Best regards!
C because I’m space there’s no gravity meaning things are weightless
Answer:
E=1.1
Explanation:
let's consider moles of E is X
3(0.20)+5(0.30)+0.10 =2X
2.2=2X
x=1.1
You can split the process in two parts:
1) heating the liquid water from 10.1 °C to 25.0 °C , and
2) vaporization of liquid water at constant temperature of 25.0 °C.
For the first part, you use the formula ΔH = m*Cs*ΔT
ΔH = 30.1g * 4.18 j/(g°C)*(25.0°C - 10.1°C) = 1,874 J
For the second part, you use the formula ΔH = n*ΔHvap
Where n is the number of moles, which is calculated using the mass and the molar mass of the water:
n = mass / [molar mass] = 30.1 g / 18.0 g/mol = 1.67 mol
=> ΔH = 1.67 mol * 44,000 J / mol = 73,480 J
3) The enthalpy change of the process is the sum of both changes:
ΔH total = 1,874 J + 73,480 J = 75,354 J
Answer: 75,354 J
<span>"between energy, electron position and the emission of electromagnetic energy. However, it is ... From that excitation state, the electron can then drop back down, releasing a photon with a predictable amount of energyin the process."</span>