Answer:
Mercury, Earth, Saturn, Jupiter, and the sun
Explanation:
this is from smallest to largest. hope it helps
Answer:
ΔG = 16.218 KJ/mol
Explanation:
- dihydroxyacetone phosphate ↔ glyceraldehyde-3-phosphate
∴ ΔG° = 7.53 KJ/mol * ( 1000 J / KJ ) = 7530 J/mol
∴ R = 8.314 J/K.mol
∴ T = 298 K
∴ Q = [glyceraldehyde-3-phosphate] / [dihydroxyacetone phosphate]
⇒ Q = 0.00300 / 0.100 = 0.03
⇒ ΔG = 7530J/mol - (( 8.314 J/K.mol) * ( 298 K ) * Ln ( 0.03 ))
⇒ ΔG = 16217.7496 J/mol ( 16.218 KJ/mol )
I think the answer is 101.2 L
Answer: 3.79*10^24 atoms
Explanation:
1 mole = 6.02214076*10^23 atoms
The enthalpy change of the reaction below (ΔHr×n , in kJ) using the bond energies provided. CO(g) + Cl₂(g) → Cl₂CO(g). is - 108kJ.
The bond energies data is given as follows:
BE for C≡O = 1072 kJ/mol
BE for Cl-Cl = 242 kJ/mol
BE for C-Cl = 328 kJ/mol
BE for C=O = 766 kJ/mol
The enthalpy change for the reaction is given as :
ΔHr×n = ∑H reactant bond - ∑H product bond
ΔHr×n = ( BE C≡O + BE Cl-Cl) - ( BE C=O + BE 2 × Cl-Cl )
ΔHr×n = ( 1072 + 242 ) - ( 766 + 656 )
ΔHr×n = 1314 - 1422
ΔHr×n = - 108 kJ
Thus, The enthalpy change of the reaction below ( ΔHr×n , in kJ) using the bond energies provided. CO(g) + Cl₂(g) → Cl₂CO(g). is - 108kJ.
To learn more about enthalpy here
brainly.com/question/13981382
#SPJ1