Answer:
a) 12/323
b) 8/233
Explanation:
a) The probability of a red ball being drawn is 12/38, or in a simplified fraction, 6/19. To find the probability that 3 are red you would multiply the probability of the fraction for each, except subtracting one from the total each time as the drawn is done without replacement. This is done as follows: 6/19 × 6/18 × 6/17= 12/323
b) The probability of drawing a blue ball is 8/38, or 4/19. To find that the first one is blue and the rest are red, the equation is done as follows: 4/19 × 6/18 × 6/17 = 8/233
(hopefully I did this right)
Oxygen had 6 valence electrons


= 2 × 23 + 2 × 52 + 2 × 16
= 182 grams
1 mole of
weighs = 182 g
8 moles weigh = 8× 182
=
or

Turns into vapor. not all of the molecules are liquid have the same energy
The best answer choice here would be 'Combination'