The question requires us to explain the differences in radii of neutral atoms, cations and anions.
To answer this question, we need to keep in mind that a neutral atom presents the same number of protons (positive particles) and electrons (negative particles). Another important information is that the protons are located in the nucleus of the atom, while the electrons are around the nucleus. Also, there is an electrostatic force between protons and electrons, which means that they the protons tend to attract the electrons to the nucleus.
While a neutral atom presents the same number of protons and electrons, a cation is an ion with positive charge, which means it has lost one or more electrons. In a cation, the balance between protons and electrons doesn't exist anymore: now, there is more positive than negative charge (more protons than electrons), and the overall attractive force that the protons have for the electrons is increased. As a result, the electrons stay closer to the nucleus and the radius of a cation is smaller than the neutral atom from which it was derived.
On the other side, anions present negative charge, which means they have received electrons. Similarly to cations, the balance between protons and electrons doesn't exist anymore, but in this case, there are more electrons than protons. In an anion, the overall attractive force that the protons have for the electrons is decreased. As a result, the electrons are "more free" to move and, as they are not so attracted to the nucleus, they tend to stay farther from the positive nucleus compared to the neutral atom - because of this, the radius of an anion is larger than the neutral atom from which it was derived.
Answer: Option D) covalent bonds between water molecules
In water, hydrogen bonds are best described as covalent bonds between water molecules
Explanation:
The hydrogen bonds between water molecules are covalent bonds because they are formed when oxygen attract the lone electron in hydrogen, thus resulting in the formation of a partially negative charge on the oxygen atom and a partially positive charge on two hydrogen atoms
Thus, the sharing of electrons between oxygen and hydrogen atoms is responsible for the covalent bonds between water molecules
Answer:
[H⁺] = 1.0 x 10⁻¹² M.
Explanation:
∵ [H⁺][OH⁻] = 10⁻¹⁴.
[OH⁻] = 1 x 10⁻² mol/L.
∴ [H⁺] = 10⁻¹⁴/[OH⁻] = (10⁻¹⁴)/(1 x 10⁻² mol/L) = 1.0 x 10⁻¹² M.
∵ pH = - log[H⁺] = - log(1.0 x 10⁻¹² M) = 12.0.
∴ The solution is basic, since pH id higher than 7 and also the [OH⁻] > [H⁺].
I think- IDK
Answer:
The Equilibrium will shift towards the left.
Explanation:
The reaction for the formation of nitric oxide is follows,
Expression for reaction quotient is as follows,
Putting the values according to the data given and calculating reaction quotient for the reaction
So, the reaction quotient is 0.16.
and the value of K is 0.01 .
Q>K
Since the value of K is less than Q, therefore the reaction will shift towards left.