1) Molar mass C8H9NO2
Element Atomic mass # of atoms mass
g/mol g
C 12 8 12*8 = 96
H 1 9 1*9 = 9
N 14 1 14*1 = 14
O 16 2 16*2 = 32
molar mass = 96 + 9 + 14 + 32 = 151 g/mol
2) Number of mols in a tablet
# of moles = mass / molar mass = 0.500 g / 151 g/mol = 0.003311 moles
3) 3 doses * 2 tablets * 0.003311 moles / tablet = 0.020 moles
Answer:
The approximate molar enthalpy of combustion of this substance is -66 kJ/mole.
Explanation:
First we have to calculate the heat gained by the calorimeter.

where,
q = Heat gained = ?
c = Specific heat = 
ΔT = The change in temperature = 3.08°C
Now put all the given values in the above formula, we get:


Now we have to calculate molar enthalpy of combustion of this substance :

where,
= enthalpy change = ?
q = heat gained = 8.2544kJ
n = number of moles methane = 

Therefore, the approximate molar enthalpy of combustion of this substance is -66 kJ/mole.
C. Oxidized and reduced are the same.
Answer:
236.9g
Explanation:
Given parameters:
Volume of gas = 81.3L
Pressure of gas = 204kPa
temperature of gas = 95°C
Unknown:
Mass of carbondioxide gas = ?
Solution:
To solve this problem, the ideal gas law will be well suited. The ideal gas law is a fusion of Boyle's law, Charles's law and Avogadro's law.
Mathematically, it is expressed as;
PV = nRT
the unknown here is n which is the number of moles;
P is the pressure, V is the volume, R is the gas constant and T is the temperature.
convert pressure into atm
101.325KPa = 1atm
204 kPa =
= 2atm
Convert temperature to Kelvin; 95 + 273 = 368K
2 x 81.3 = n x 0.082 x 368
n =
= 5.38moles
Since the unknown is mass;
Mass = number of moles x molar mass
Molar mass of carbon dioxide = 12 + 2(16) = 44g/mol
Mass = 5.38 x 44 = 236.9g
In cells use oxygen to release energy stored in sugars such as glucose. In fact, most of the energy used by the cells in your body is provided by cellular respiration. Just as photosynthesis occurs in organelles called chloroplasts, cellular respiration takes place in organelles called mitochondria.