The size of the forces between you and the planet you're on is
your weight on that planet.
Don't forget that you pull the planet with a force equal to the force
that the planet pulls on you. Your weight on Earth is the same as
the Earth's weight on you !
Answer:
<u><em>Plasma</em></u>
Explanation:
<u><em>Plasma</em></u> is the most common because plasma is a gas that has been energized to the point that some of the electrons break
<span> Maths delivers! Braking distance ... If the </span>car<span> is initially travelling at u</span>m<span>/s, then the stopping distance d </span>m<span> ... the </span>speed<span> of the </span>car<span> at the </span>instant<span> the </span>brakes<span> are applied. ... An object with </span>constant acceleration<span> travels the </span>same<span> distance as it would ... We </span>start<span> with the second equation of motion:.</span>
The forces acting on the elevator are:
Gravity force
Tension force
Air resistance
Explanation:
Let's go through each of the forces listed and see which ones are acting on the elevator.
- Normal force: NO. The normal force is a force exerted by a surface whenever there is another object "pushing" on it. For instance, when a box is at rest on a table, the box is "pushing" on the table (due to its weight), and the table "pushes back" on the box, upward, in order to balance its weight: this is the normal force. In this case, the elevator is lifted, so it is not pushing on anything, therefore there is no normal force.
- Gravity force: YES. The force of gravity acts on every object located in the gravitational field of the Earth; it pulls downward, and its magnitude is
, where m is the mass of the object and g is the acceleration of gravity. - Applied force: NO. Here there is no applied force, since there is nobody "pushing" or "pulling" the elevator.
- Friction force: NO. As we are considering the forces on the elevator, and the elevator is not sliding against any surfaces, there is no force of friction. (The force of friction acts whenever there are two surfaces sliding against each other, which is not the case here)
- Tension force: YES. The tension force is the force exerted by a rope or a string when pulling an object. In this case, there are four ropes pulling the elevator, therefore there are 4 forces of tension acting on the elevator, upward.
- Air resistance: YES. As the elevator is moving through the air, the interaction between the molecules of air with the surface of the elevator produces a force (called air resistance) that "resists" the motion of the elevator, therefore pushing downward. However, the magnitude of this force is negligible in this case.
Learn more about forces:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly