1.062 mol/kg.
<em>Step 1</em>. Write the balanced equation for the neutralization.
MM = 204.22 40.00
KHC8H4O4 + NaOH → KNaC8H4O4 + H2O
<em>Step 2</em>. Calculate the moles of potassium hydrogen phthalate (KHP)
Moles of KHP = 824 mg KHP × (1 mmol KHP/204.22 mg KHP)
= 4.035 mmol KHP
<em>Step 3</em>. Calculate the moles of NaOH
Moles of NaOH = 4.035 mmol KHP × (1 mmol NaOH/(1 mmol KHP)
= 4.035 mmol NaOH
<em>Step 4</em>. Calculate the mass of the NaOH
Mass of NaOH = 4.035 mmol NaOH × (40.00 mg NaOH/1 mmol NaOH)
= 161 mg NaOH
<em>Step 5</em>. Calculate the mass of the water
Mass of water = mass of solution – mass of NaOH = 38.134 g - 0.161 g
= 37.973 g
<em>Step 6</em>. Calculate the molal concentration of the NaOH
<em>b</em> = moles of NaOH/kg of water = 0.040 35 mol/0.037 973 kg = 1.062 mol/kg
A glacier is a large persistent body of ice. A geyser is a spring characterized by intermittent discharge of water ejected turbulently and accompanied by water vapor phase (steam). They both depend on water
<u>61.25 grams</u> of CO can be formed from 35 grams of oxygen.
The molecular mass of oxygen is <u>16 gmol⁻¹</u>
The molecular mass of carbon monoxide is<u> 28 gmol⁻¹</u>
Explanation:
The molar mass of carbon monoxide is molar mass of C added to that of O;
12 + 16 = 28
= 28g/mol
The molar mass of oxygen is 16 g/mol while that of oxygen gas (O₂) is 32 g/mol
Since the ration oxygen to carbon monoxide is 1: 2 moles, we begin to find out how many moles of carbon monoxide are formed by 35 g of oxygen;
35/32 * 2
= 70/32 moles
Then multiply by the molar mass of carbon monoxide;
70/32 * 28
= 61.25 g
Answer:
It is necessary to use models to study sub- microscopic objects such as atoms and molecules because they are too small to be seen.