The spring constant is 181.0 N/m
Explanation:
We can solve the problem by applying the law of conservation of energy. In fact, the elastic potential energy initially stored in the compressed spring is completely converted into gravitational potential energy of the dart when the dart is at its maximum height. Therefore, we can write:

where the term on the left represents the elastic potential energy of the spring while the term on the right is the gravitational potential energy of the dart at maximum height, and where
k is the spring constant of the spring
x = 2.08 cm = 0.0208 m is the compression of the spring
m = 12.3 g = 0.00123 kg is the mass of the dart
is the acceleration due to gravity
h = 3.25 m is the maximum height of the dart
Solving for k, we find:

Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
Answer:
The value is 
Explanation:
From the question we are told that
The value of charge on each three point charge is

The length of the sides of the equilateral triangle is 
Generally the total potential energy is mathematically represented as
![U = k * [ \frac{q_1 * q_2}{r} + \frac{q_2 * q_3}{r} + \frac{q_3 * q_1}{r} ]](https://tex.z-dn.net/?f=U%20%20%3D%20k%20%2A%20%20%5B%20%5Cfrac%7Bq_1%20%2A%20%20q_2%7D%7Br%7D%20%20%2B%20%20%5Cfrac%7Bq_2%20%2A%20%20q_3%7D%7Br%7D%20%20%20%2B%20%5Cfrac%7Bq_3%20%2A%20%20q_1%7D%7Br%7D%20%5D)
=>
Here k is coulomb constant with value 
=>
I️ would say agility. Although, speed could also be an answer.
Answer:
harder
heavier objects resist change more than lighter objects.
The answer is: A compound can be separated by physical means.