Answer:
a) -5.40 rad/s
b) -2.842 rad/s²
Explanation:
The direction is important in dealing with such questions. Clockwise is considered negative and counterclockwise is considered positive
a) Δω = final angular velocity - initial angular velocity
= -2.70 rad/s - 2.70 rad/s
= -5.40 rad/s
b) ∝ = Δω/Δt = (-5.40 rad/s)/1.90s = -2.842 rad/s²
Answer:
The electron cloud
Explanation:
Metallic bonds result from interaction of positively charged metal ions with free valence electrons which now forms an electron cloud around the metal ions. Electrostatic interaction between the metal ions and the electron cloud holds the metal ions together in the metallic bond.
Arm legs nose headsssssssssss
Answer:
Speed of water at the top of fall = 5.40 m/s
Explanation:
We have equation of motion

Here final velocity, v = 26 m/s
a = acceleration due to gravity

displacement, s = 33 m
Substituting

Speed of water at the top of fall = 5.40 m/s
<span>When t=0, v=0, d=0
When t=tf, v=41m/s, d=3.5m
We have 2 formulas – the ones corresponding to uniformly accelerated linear movement:
vf=a*t+vo
d=(1/2)*a*t^2+vo*t
Let’s put the data in the formulas:
41m/s=a*t+0=a*t
3.5m=(1/2)*a*t^2+0*t=1/2*a*t^2
You can use a variety of methods to find t and a. I will choose substitution.
t=(41m/s)/a
3.5m=(1/2)*a*((41m/s)/a)^2=(1/2)*a*(41m/s)^2/a^2=(1/2)*(41m/s)^2/a
a=(1/2)*(41m/s)^2/(3.5m)=(1/2)*41^2(m^2/s^2)/(3.5m) a=41^2(m/s^2)/( 2*3.5)=240m/s^2</span>