Vector 1 has components


and vector 2 has


Add these vectors to get the resultant, which has components


The magnitude of the resultant is

with direction
such that

or about 50º N of E.
When the temperature of an object that is giving off light is increased, the particles in the object will move at a faster rate and there will be increased vibration of these molecules. This will makes the object to emit more light and to shine more brightly.
To solve the problem it is necessary to take into account the concepts related to simple pendulum, i.e., a point mass that is suspended from a weightless string. Such a pendulum moves in a harmonic motion -the oscillations repeat regularly, and kineticenergy is transformed into potntial energy and vice versa.
In the given problem half of the period is equivalent to 1 second so the pendulum period is,

From the equations describing the period of a simple pendulum you have to

Where
g= gravity
L = Length
T = Period
Re-arrange to find L we have

Replacing the values,


In the case of the reduction of gravity because the pendulum is in another celestial body, as the moon for example would happen that,




In this way preserving the same length of the rope but decreasing the gravity the Period would increase considerably.
Answer:
a) a = 0
b) W = 29.72 N
Explanation:
a)The acceleration of an object is defined as the change of its speed with respect to a time interval, Because the briefcase remains at rest, its acceleration (a) is zero.
a=0
b) Calculation of the weight of the briefcase
The formula to calculate the weight is the following:
W= m*g Formula (1)
Where:
W : is the weight in Newtons (N)
m : is the mass in kilograms (kg)
g : is the acceleration due to gravity in meters over second square (m/s²)
Data
m=3.03 kg : mass of the briefcase
m=9.81 m/s² : acceleration due to gravity
We replace data in the formula (1)
W= m*g = 3.03 kg * 9.81 m/s²
W= 29.72 N