Answer:
The kinetic energy of an object is also measured in joules. Anything that is moving has kinetic energy, but various factors affect how much kinetic energy an object has. The first factor is speed. If two identical objects are moving at different speeds, the faster object has more kinetic energy. In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest.
Explanation:
The correct answers are :
Changing the volume of the system.
Changing the temperature of the system.
Equilibrium will remain unaffected if the concentration of products and reactants are kept the same, and the temperature of the system is kept constant.
As the system is closed, we cannot add or remove products or reactants.
Change in temperature will shift the chemical equilibrium towards the reactant or product depending on whether the reaction is exothermic or endothermic.
Also change in volume will shift the chemical equilibrium of a chemical reaction if the reactants or products or both are gases.
Answer:
OH−(aq), and H+(aq)
Explanation:
Redox reactions may occur in acidic or basic environments. Usually, if a reaction occurs in an acidic environment, hydrogen ions are shown as being part of the reaction system. For instance, in the reduction of the permanganate ion;
MnO4^-(aq) + 8H^+(aq) +5e-------> Mn^2+(aq) + 4H2O(l)
The appearance of hydrogen ion in the reaction equation implies that the process takes place under acidic reaction conditions.
For reactions that take place under basic conditions, the hydroxide ion is part of the reaction equation.
Hence hydrogen ion and hydroxide ion are included in redox reaction half equations depending on the conditions of the reaction whether acidic or basic.
B and e
first we need to balance the NH3 hence first we do E and multiplying the coefficient by 2. that will leave us with N2+H2–>2NH3.
N2 and H2 is balanced and now all that is left to do is the balance H2 by 3 as there is 6H on RHS hence we need 6H on LHS
Answer:
Different substances have different molecular masses. Thus, equal masses have different numbers of atoms, molecules, or moles. On the other hand, equal numbers of moles of different substances have different masses.