Answer: C2HNO3
Explanation: C = 27.59/12.011 = 2.297
H = 1.15/1.008 = 1.1409
N = 16.09/14.007 = 1.1487
O = 55.17/15.999 = 3.4483
Divide by smallest result:
C = 2
H=1
N=1
O = 3
Empirical formula = C2HNO3
Answer:
Answer of question a is 345J.
Explanation:
In question a following is given in data:
-mass of iron (m) = 10.0 g
-temperature (ΔT) = final temperature- initial temperature= 100-25= 75 degree Celsius
-Specific Heat capacity of iron (c)= 0.46J/g°C.
Heat (Q)=?
Solution:
Formula for Heat is :
Q=m x c x ΔT
Q= 10 x 0.46 x 75
Q= 345 J.
so, 345 joules of heat is needed to increase the temperature of 10 grams of iron.
- From the above formula all other questions can easily be solved from the same procedure.
Answer:
a. -29.8 kJ/mol-rxn
Explanation:
For a chemical reaction system the forward and reverse rate are equal. The standard molar enthalpy formation of NH3 is -45.9 kJ/mol. For the enthalpy of NH3 (8) the molar enthalpy is -29.8kJ/mol. The molar mass of N2 = 28.02g/mol. Molar enthalpy of formation is standard amount of substance produced in the formation of a reaction. The molar enthalpy is the change in enthalpy due to reaction per mole.
Answer:
Total ATP molecules produced = 66 molecules of ATP
Explanation:
A 10-carbon fatty acid when it has undergone complete oxidation will yield 5 acetyl-CoA molecules and 4 FADH₂ and 4 NADH molecules each. Each of the 5 acetyl-CoA molecules enters into the citric acid cycle and is completely oxidized to yield further ATP and FADH₂ and NADH molecules.
The total yield of ATP in the various enzymatic step is calculated below:
Acyl-CoA dehydrodenase = 4 FADH₂
β-Hydroxyacyl-CoA dehydrogenase = 4 NADH
Isocitrate dehydrogenase = 5 NADH
α-Ketoglutarate dehydrogenase = 5 NADH
Succinyl-CoA synthase = 5 ATP (from substrate-level phosphorylation of GDP)
Succinate dehydrogenase = 5 FADH₂
Malate dehydrogenase = 5 NADH
Total ATP from FADH₂ molecoles = 9 * 1.5 = 13.5
Total NADH molecules = 19 * 2.5 = 47.5
Total ATP molecules produced = 13.5 + 47.5 + 5
Total ATP molecules produced = 66 molecules of ATP