Answer:
D
Explanation: The heat of the water rapidly speed up the process
Answer: (Assuming we’re going by degrees Fahrenheit) I’d say 140.
Explanation: -40 would be beyond freezing point for water which is 32 degrees Fahrenheit and 40 would nearly be freezing point. For water to transform into its gas phase, the temperature would need to be greater. Therefore, 140 degrees Fahrenheit makes the most sense.
Although I did search it up and 212 degrees Fahrenheit (100 degrees Celsius) is the proven temperature at which water transforms into water vapor so... not sure if there’s more to the question or I’m interpreting the question wrong.
The answer is B. In the same direction as the force. Hope this helps :)
Answer:
86.2 g/mol
Explanation:
Before you can find the molar mass, you first need to calculate the number of moles of the gas. To find this value, you need to use the Ideal Gas Law:
PV = nRT
In this equation,
-----> P = pressure (mmHg)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas constant (62.36 L*mmHg/mol*K)
-----> T = temperature (K)
After you convert the volume from mL to L and the temperature from Celsius to Kelvin, you can use the equation to find the moles.
P = 760 mmHg R = 62.36 L*mmHg/mol*K
V = 250 mL / 1,000 = 0.250 L T = 20 °C + 273.15 = 293.15 K
n = ? moles
PV = nRT
(760 mmHg)(0.250 L) = n(62.36 L*mmHg/mol*K)(293.15 K)
190 = n(18280.834)
0.0104 = n
The molar mass represents the mass (g) of the gas per every 1 mole. Since you have been given a mass and mole value, you can set up a proportion to determine the molar mass.
<----- Proportion
<----- Cross-multiply
<----- Divide both sides by 0.0104