The answer to this question would be the least number (right most number).
If you add an even number with even number, the result should be even. But if there is just one odd number added, it will be odd.
In binary, all the number is multiplied by

. It is pretty clear that all the number should be even beside the first/lowest multiplier

which has potential to be 1.
Answer:
Equal
Explanation:
The impulse theorem states that the impulse exerted on each cart is equal to the change in momentum of the cart:

where
I is the impulse
pf is the final momentum
pi is the initial momentum
The impulse is equal to the product between the force applied and the contact time:

In this case, the force applied to the two carts (F) is the same, and the contact time (
) is the same as well. Therefore, the impulse exerted on the two carts is the same.
Moreover, the initial momentum of the two carts is also the same (zero, because they start from rest:
). So the formula becomes

And since I is the same for the two carts, the final momentum (
) will also be equal.
Answer:
a) λ = 121.5 nm
, b) 102.6, 97, 91.1 nm
Explanation:
Bohr's model describes the energy of the hydrogen atom
= k² e² / 2m (1 / n²)
A transition occurs when the electron passes from n level to a lower one
-
= k² e² / 2m (1 /
² - 1 /
²)
Planck's relationship is
E = h f = h c / lam
hc /λ = k² e²/ 2m(1 /
² - 1 /
²)
1 / λ = [k² e² / 2m h c] (1 /
² - 1 /
²)
1 /λ = Ry] (1 /
² - 1 /
²)
a) the first element of the series occurs for
= 2
1 / λ = 1.097 10⁷ (1- 1/2²)
1 / λ = 1.097 10⁷ (1- 0.25)
1 / λ = 0.82275 10⁷
λ = 1.215 10⁻⁷ m
λ = 1,215 10⁻⁷ m (10⁹nm / m)
λ = 121.5 nm
b) the next elements of the series occur to
1 /λ λ (10-7m) λ (nm)
3 1 1,097 10⁷ (1-1 / 9) 1,0255 102.6
4 1 1,097 10⁷ (1-1 / 16) 0.9723 97.2
∞ 1 1,097 10⁷ (1 - 0) 0.91158 91.1