The time taken to hit the ground is 3.9 s, the range is 18m and the final velocity is 42.82 m/s
<h3>
Motion Under Gravity</h3>
The motion of an object under gravity is the vertical motion of the object under the influence of acceleration due to gravity.
Given that a ball is thrown horizontally from the roof of a building 75 m tall with a speed of 4.6 m/s.
a. how much later does the ball hit the ground?
The time can be calculated by considering the vertical component of the motion with the use of formula below.
h = ut + 1/2gt²
Where
- Initial velocity u = 0 ( vertical velocity )
- Acceleration due to gravity g = 9.8 m/s²
Substitute all the parameters into the formula
75 = 0 + 1/2 × 9.8 × t²
75 = 4.9t²
t² = 75/4.9
t² = 15.30
t = √15.3
t = 3.9 s
b. how far from the building will it land?
The range can be found by using the formula
R = ut
Where u = 4.6 m/s ( horizontal velocity )
R = 4.6 × 3.9
R = 18 m
c. what is the velocity of the ball just before it hits the ground?
The final velocity will be
v = u + gt
v = 4.6 + 9.8 × 3.9
v = 4.6 + 38.22
v = 42.82 m/s
Therefore, the answers are 3.9 s, 18 m and 42.82 m/s
Learn more about Vertical motion here: brainly.com/question/24230984
#SPJ1
Explanation:
When hot water is poured on the can in a bucket of cold water, the can crushes off means it gets unshaped
The similarity is that they both are types of bonds in molecules.
Ionic bonds are between a metal and a nonmetal.
Covalent bonds are between two nonmetals.
Answer:
l these errors believe that the speed of the system is less than that calculated
Explanation:
When we carry out any measurement in addition to the magnitude, the sources of uncertainty must also be analyzed.
We can have random uncertainties, correspondin
g to momentary errors, for example early warps during medicine, parallax errors, errors in the starting and ending points of the movement; I mean every possible random error. This error is the one that is analyzed and calculated in the statistical equations
There is another source of error, the systematic ones, these are much more complicated, they can be an error in the pendulum length, friction in the pendulum movement mechanism, deformities in the support systems, this errors are not analyzed by the statistic, in general They discover by looking at the results and comparing with the tabulated or real ones.
tith the explanation we see that the errors described are systematic.
In general these errors believe that the speed of the system is less than that calculated