Answer:
a)
, b)
, c)
, d)
, e) 
Explanation:
a) The coefficient of performance of the reversible refrigeration cycle is:


The temperature of the hot reservoir is:



b) The coefficient of performance is:


c) The temperature of the hot reservoir can be determined with the help of the following relation:






d) The coefficient of performance is:


e) The temperature of the cold reservoir is:




Answer:
A. Manufacturers rating capacity ↔ 3. Must be marked on all jacks; must not be exceeded
B. Block Used to lift and hold heavy loads, allow them for travel ↔ 1. Place the jack head against this
C. Level surface ↔ 4. Place this under the base of the jack when it's necessary to provide a firm foundation
D. Jack ↔ 2. Used to lift and hold heavy loads, allow them for travel
Explanation:
The manufacturers rating for a jack is labelled on all jacks and should be referenced to compare with the load to be lifted so as to ensure a safe and successful lifting.
In order to lift a load, such as a car, it is required to place the jack on a level surface to provide balance during the lifting task
The head of the jack is placed against the block for lifting heavy objects for proper performance
Answer: hello some parts of your question is missing attached below is the missing information
The radiator of a car is a type of heat exchanger. Hot fluid coming from the car engine, called the coolant, flows through aluminum radiator tubes of thickness d that release heat to the outside air by conduction. The average temperature gradient between the coolant and the outside air is about 130 K/mm . The term ΔT/d is called the temperature gradient which is the temperature difference ΔT between coolant inside and the air outside per unit thickness of tube
answer : Total surface area = 3/2 * area of old radiator
Explanation:
we will use this relation
K = 
change in T = ΔT
therefore New Area ( A ) = 3/2 * area of old radiator
Given that the thermal conductivity is the same in the new and old radiators
Answer:
T₂ =93.77 °C
Explanation:
Initial temperature ,T₁ =27°C= 273 +27 = 300 K
We know that
Absolute pressure = Gauge pressure + Atmospheric pressure
Initial pressure ,P₁ = 300+1=301 kPa
Final pressure ,P₂= 367+1 = 368 kPa
Lets take temperature=T₂
We know that ,If the volume of the gas is constant ,then we can say that


Now by putting the values in the above equation we get

The temperature in °C
T₂ = 366.77 - 273 °C
T₂ =93.77 °C