Explanation: -Nitrogen is the element that may form diatomic molecules held together by triple covalent bonds. -Nitrogen is an element that occurs as a diatomic molecule in its gaseous state. This element only exists in the diatomic form with triple bonds between the two atoms.
Explanation:
Moles=mass/molar mass
moles × molar mass = mass
0.206 x 119= mass
Mass= 24. 51grams
Answer:
The standard enthalpy of formation of NOCl(g) at 25 ºC is 105 kJ/mol
Explanation:
The ∆H (heat of reaction) of the combustion reaction is the heat that accompanies the entire reaction. For its calculation you must make the total sum of all the heats of the products and of the reagents affected by their stoichiometric coefficient (number of molecules of each compound that participates in the reaction) and finally subtract them:
Enthalpy of the reaction= ΔH = ∑Hproducts - ∑Hreactants
In this case, you have: 2 NOCl(g) → 2 NO(g) + Cl₂(g)
So, ΔH=
Knowing:
- ΔH= 75.5 kJ/mol
= 90.25 kJ/mol
= 0 (For the formation of one mole of a pure element the heat of formation is 0, in this caseyou have as a pure compound the chlorine Cl₂)
=?
Replacing:
75.5 kJ/mol=2* 90.25 kJ/mol + 0 - 
Solving
-
=75.5 kJ/mol - 2*90.25 kJ/mol
-
=-105 kJ/mol
=105 kJ/mol
<u><em>The standard enthalpy of formation of NOCl(g) at 25 ºC is 105 kJ/mol</em></u>
Answer: 2 (2 neutrons are produced).
Explanation:
1) In the left side of the transmutation equationa appears:
²³⁵U + ¹n →
I am omitting the atomic number (subscript to the leff) because the question does not show them as it is focused on number of neutrons.
2) The right side of the transmutation equation has:
→ ¹⁴⁴Ce + ⁹⁰Sr + ?
3) The total mass number of the left side is 235 + 1 = 236
4) The total mass number of Ce and Sr on the right side is 144 + 90 = 234
5) Then, you are lacking 236 - 234 = 2 unit masses on the right side which are the 2 neutrons that are produced along with the Ce and Sr.
The complete final equation is:
²³⁵U + ¹n → ¹⁴⁴Ce + ⁹⁰Sr + 2 ¹n
Where you have the two neutrons produced.