The way you calculate the empirical formula is to firstly assume 100g. To find each elements moles you take each elements percentage listed, times it by one mole and divide it by its atomic mass. (ex: moles of K =55.3g x 1 mole/39.1g, therefore there is 1.41432225 moles of Potassium) Once you’ve completed this for every element you list each elements symbol beside it’s number of moles and divide by the smallest number because it can only go into its self once. After you’ve done this, you’ve found your empirical formula, which is the simplest whole number ratio of atoms in a compound. I’ve added an example of a empirical question I completed last semester :)
3-pentanone to form 3-pentanol
Here 3-pentanone reacts with H2/Pt to given 3-pentanol
So here with one step we can convert given ketone to alcohol
The reaction will be
The order would be coefficient, law of conservation of mass, products, and reactants respectively.
<h3>Word matching</h3>
The number written in front of a chemical symbol in an equation is called a coefficient.
The total mass of a system being unchanged is known as the law of conservation of mass
The substances made in chemical reactions are called products.
The starting materials in chemical reactions are called reactants.
More on reactions can be found here: brainly.com/question/17434463
#SPJ1
Answer:
d. 97.60 g
Explanation:
Given parameters:
Number of moles of formaldehyde = 3.25moles
Ratio:
C H O
1 2 1
Unknown:
Mass of this sample = ?
Solution:
The empirical formula of a compound is its simplest formula. It is the simplest whole number ratio of the atoms in a given substance.
The molecular formula is the actual formula of the compound.
Since the molecular and empirical formula are the same here, the formula of the compound is;
CH₂O
To find the mass of the formaldehyde, use the expression below;
Mass = number of moles x molar mass
molar mass of CH₂O = 12 + 2(1) + 16 = 30g/mol
Mass = 3.25 x 30 = 97.5g