Explanation:
Moles of phosphorus pentachloride present initially = 2.5 mol
Moles of phosphorus trichloride at equilibrium = 0.338 mol

Initially
2.5 mol 0 0
At equilibrium:
(2.5 - x) mol x x
So, from above, the moles of phosphorus trichloride at equilibrium , x= 0.338 mol
Mass of 0.338 moles of phosphorus trichloride at equilibrium:
= 0.338 mol × 137.5 g/mol = 46.475 g
Moles of phosphorus pentachloride present at equilibrium :
= (2.5 - 0.338) mol = 2.162 mol
Mass of 2.162 moles of phosphorus pentachloride at equilibrium:
= 2.162 mol × 208.5 g/mol = 450.777 g
Moles of chloride gas present at equilibrium : 0.338 mol
Mass of 0.338 moles of chloride gas at equilibrium:
= 0.338 mol × 71 g/mol = 23.998 g
Answer:
The half life is 
Explanation:
The half life of a first order reaction is mathematically represented as
Substituting
for the rate constant

<u>Answer:</u> The molar mass of the insulin is 6087.2 g/mol
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

Or,

where,
= osmotic pressure of the solution = 15.5 mmHg
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (insulin) = 33 mg = 0.033 g (Conversion factor: 1 g = 1000 mg)
Volume of solution = 6.5 mL
R = Gas constant = 
T = temperature of the solution = ![25^oC=[273+25]=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5D%3D298K)
Putting values in above equation, we get:

Hence, the molar mass of the insulin is 6087.2 g/mol
Answer:
Go talk to people more and dont rush things
Explanation:
Youll get one in time
Galvanizing protects from rust in a number of ways: It forms a barrier that prevents corrosive substances from reaching the underlying steel or iron. The zinc serves as a sacrificial anode so that even if the coating is scratched, the exposed steel will still be protected by the remaining zinc.