Answer:
Two half lives.
Explanation:
It is known that the decay of isotopes and radioactive material obeys first order kinetics.
Also, it is clear that in first order decay the half-life time is independent of the initial concentration.
That means for a sample 100% to decay to 50 % it will take one half-life, and to decay the remaining 50% to 25% it will take another half-life.
So, for a sample has 25% parent and 75% daughter it will have two half-lives.
Answer:
a hard natural coal of high luster differing from bituminous coal in containing little volatile matter and in burning very cleanly is called anthracite . called also hard coal
Explanation:
Answer from Gauth math
Answer: 850.0 g/min.
Explanation:
- The rate of the reaction = (ΔC/Δt) where,
ΔC is the change in concentration of reactants or products.
Δt is the change in time of the reaction proceeding.
- The rate is needed to be calculated in (g/min).
- We need to calculate the amount of the product in (g) via using the relation (n = mass / molar mass).
- mass (g) = n x molar mass,
- n = 1.5 moles and molar mass of P₄O₁₀ = 283.88 g/mol.
- m = 1.5 x 283.88 = 425.82 g.
- ΔC = 425.82 g and Δt = 30 s / 60 = 0.5 min.
- The rate of the reaction = ΔC / Δt = (425.82 g / 0.5 min) = 851.64 g/min.
<em>can be approximated to 850.0 g/min.</em>
Answer:
Approximately
under standard conditions.
Explanation:
Equation for the overall reaction:
.
Write down the ionic equation for this reaction:
.
The net ionic equation for this reaction would be:
.
In this reaction:
- Zinc loses electrons and was oxidized (at the anode):
. - Copper gains electrons and was reduced (at the cathode):
.
Look up the standard potentials for each half-reaction on a table of standard reduction potentials.
Notice that
is oxidation and is likely not on the table of standard reduction potentials. However, the reverse reaction,
, is reduction and is likely on the table.
The reduction potential of
would be
, the opposite of the reverse reaction
.
The standard potential of the overall reaction would be the sum of the standard potentials of the two half-reactions:
.
Answer:
, product favoured
Explanation:
Complete ionic equation : In complete ionic equation, all the substance that are strong electrolyte and present in an aqueous are represented in the form of ions.
Net ionic equation : In the net ionic equations, we do not include the spectator ions in the equations.
When hydrochloric acid react with potassium cyanide, then it gives potassium chloride and hydrocyanic acid as products.
The complete ionic equation will be:
The net ionic equation will not contain spectator ions which are
and
:

The reaction is product favoured.