Answer:
Mass = 4152kg
Explanation:
Given
L = 208m
I = 154A
V = 0.245V
Density = 3610 kg/m3
ρ = 4.23 x 10-8Ω·m = resistivity of wire
Resistance R = ρL/ A
R = voltage / current = V/I = 0.245/154 = 1.59×10-³ohms
1.59×10-³ = 4.23 x 10-⁸×208/A
Rearranging,
A = 4.23 x 10-⁸×208/1.59×10-³
A = 5.53×10-³m²
Mass = density × volume
Volume = L×A = 208×5.53×10-³m³= 1.15m³
Mass = 3610×1.15 = 4152kg
Hello there.
<span>A lever in which the load is between the fulcrum and the applied force is a ________.
Answer: It is a second class lever.
Hope This Helps You!
Good Luck Studying ^-^</span>
Answer:
Force = 21.85N
Explanation:
Given the following data;
Mass = 2.3kg
Acceleration = 9.5m/s²
To find the force;
Force is given by the multiplication of mass and acceleration.
Mathematically, Force is;
Where;
F represents force.
m represents the mass of an object.
a represents acceleration.
Substituting into the equation, we have
Force = 2.3 * 9.5
Force = 21.85N
Therefore, the force applied to the rat is 21.85 Newton.
Answer:
b racism bc saying whites are better than blacks is racist
Answer:
vf = 11.2 m/s
Explanation:
m = 10 Kg
F = 2*10² N
x = 4.00 m
μ = 0.44
vi = 0 m/s
vf = ?
We can apply Newton's 2nd Law
∑ Fx = m*a (→)
F - Ffriction = m*a ⇒ F - (μ*N) = F - (μ*m*g) = m*a ⇒ a = (F - μ*m*g)/m
⇒ a = (2*10² N - 0.44*10 Kg*9.81 m/s²)/10 Kg = 15.6836 m/s²
then , we use the equation
vf² = vi² + 2*a*x ⇒ vf = √(vi² + 2*a*x)
⇒ vf = √((0)² + 2*(15.6836 m/s²)*(4.00m)) = 11.2 m/s