Average speed = (total distance covered) / (time to cover the distance)
Total distance covered = (9.5m + 3.5m + 15m) = 28 meters
Time to cover the distance = 43 seconds
Average speed = (28 meters) / (43 seconds)
Average speed = 0.65 meters/second

A system that can be affected by the outside environment, by an exchange of matter or energy is an open physical system .
The velocity of the mass after 9 second is 88 m/s
Answer:
a. 11 m/s at 76° with respect to the original direction of the lighter car.
Explanation:
In this exercise, since both cars make a right angle, let's assume that the lighter car only has a horizontal velocity component (vx) and that the heavier one only has a vertical velocity component (vy). The final velocities for both components for the system can be determined as:

Assume that the lighter car has a 1kg mass and that the heavier car has a 4 kg mass.

The magnitude of the final velocity of the wreck can be found as:
![v_{f}^{2}= v_{fx}^{2}+ v_{fy}^{2}\\v_{f}=\sqrt[]{2.6^{2} + 10.4^{2}} \\v_{f}= 10.72](https://tex.z-dn.net/?f=v_%7Bf%7D%5E%7B2%7D%3D%20v_%7Bfx%7D%5E%7B2%7D%2B%20v_%7Bfy%7D%5E%7B2%7D%5C%5Cv_%7Bf%7D%3D%5Csqrt%5B%5D%7B2.6%5E%7B2%7D%20%2B%2010.4%5E%7B2%7D%7D%20%5C%5Cv_%7Bf%7D%3D%2010.72)
The final velocity has an intensity of roughly 11 m/s
As for the angle, it can be determined in respect to the lighter car (x axis) as follows:

Therefore, the wreck has a velocity with an intensity of 11 m/s at 76° with respect to the original direction of the lighter car.
Answer:
The racetrack is 996.7 meters long
Explanation:
Convert 251km/h to km/s (kilometers per second)
3600 seconds in an hour, so:
251/3600 = 0.0697km/s
Convert km/s to m/s (meters per second)
1000 meters in a kilometer, so:
0.0697*1000 = 69.7m/s
Find length of racetrack:
69.7m/s*14.3s = 996.7m
If the racer travels 69.7 meters in one second and it takes 14.3 seconds to complete a lap, the racetrack is 996.7 meters long.