a) Cumulus is 100% the correct answer
Newton's second law tells you:
Sum of forces on an object = ma
Here, the forces acting on the bundle are the tension in the string and the force of gravity, these two must combine to yield the acceleration of the bundle.
So we have:
T-mg = ma
or T=m(g+a)
We know m=8.7kg, we need to find a from the information
starting from rest, an accelerating object covers distance according to:
<span>dist = 1/2 at^2 </span>
to cover 1m in 1.8s, we have:
a=2d/t^2 = 2x1/1.8^2 = 0.62 m/s/s
Thus, the tension in the string is:
<span>T = m(g+a)
= 8.7</span>kg(9.8m/s/s+0.62m/s/s)
<span>
<span>T = 90.654 N
</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
When solar radiation reaches the Earth it quickly dissipates as most of the radiation and UV rays are blocked by ozone layer, but more radiation and UV rays are able to get through because of global warming.
Apply the combined gas law
PV/T = const.
P = pressure, V = volume, T = temperature, PV/T must stay constant.
Initial PVT values:
P = 1atm, V = 8.0L, T = 20.0°C = 293.15K
Final PVT values:
P = ?, V = 1.0L, T = 10.0°C = 283.15K
Set the PV/T expression for the initial and final PVT values equal to each other and solve for the final P:
1(8.0)/293.15 = P(1.0)/283.15
P = 7.7atm
Answer:
law of conservation of energy is that a perpetual motion machine of the first kind cannot exist, that is to say, no system without an external energy supply can deliver an unlimited amount of energy to its surroundings
Explanation:
Hope it helps.
Mark me as Brainliest plz!