Answer:
Explanation:
Below is an attachment containing the solution to the question.
The speed of sound is 340.29 meters per second.
Knowing that, we can calculate how high this cliff is by 340.29 * .4
The cliff is 340.29 * .4 = 136.12 meters
Answer:
(1) 2.25m/s^2
(2) 45.6m
Explanation:
(1) A car accelerates uniformly from 12m/s to 39m/s in 12 seconds
Therefore the average acceleration can be calculated as follows
a = 39-12/12
a = 27/12
a= 2.25m/s^2
(2) A butterfly is flying at 4m/s , it accelerates uniformly at 1.2 m/s for 6 seconds
u= 4
a= 1.2
t= 6
Therefore the distance can be calculated as follows
S= ut + 1/2at^2
= 4×6 + 1/2 × 1.2 × 6^2
= 24 + 1/2 × 1.2 × 36
= 24 + 1/2 × 43.2
= 24 + 21.6
S = 45.6m
Hence the butterfly travels at 45.6m
The 1st example is NOT a longitudinal wave
Explanation:
Waves are periodic disturbance of the space that travel carrying energy but not matter.
Depending on their vibration, waves are classified into two types:
- Transverse waves: in transverse waves, the vibration of the wave occurs in a direction perpendicular to the direction of propagation of the wave. Examples of transverse waves are electromagnetic waves.
- Longitudinal waves: in longitudinal waves, the vibration of the wave occurs in a direction parallel to the direction of propagation of the wave (back and forth), creating regions of higher particle density (compressions) and lower particle density (rarefactions). Examples of longitudinal waves are sound waves.
In this problem we have four options given:
- The first picture represents a transverse wave, because the vibration of the robe is up and down, while the wave propagates on the left-right direction
- The second picture represents a sound wave, which is a longitudinal wave
- The 3rd picture represents a longitudinal wave, since the vibration of the slinky is back and forth along the direction of propagation
- The 4th picture also represents a sound wave, which is longitudinal
Therefore, the only wave which is not longitudinal is the one in the 1st picture.
Learn more about waves:
brainly.com/question/5354733
brainly.com/question/9077368
#LearnwithBrainly
Answer:
Explanation:
heat lost by coffee = heat gain by aluminum spoon
heat lost by coffee = mc ( 85° C - T)
175 ml of water = 175 grams
175 grams = (175 / 1000) kg = 0.175 kg
heat loss by coffee = 0.175 × 4182 J/Kgk ( 85 - T) = 731.85 ( 85-T) = 62207.25 - 731.85 T
heat gain by aluminum spoon = 0.012kg × 897 J/kgK ( T - 22) = 10.764 T - 236.808
10.764 T - 236.808 = 62207.25 - 731.85 T
10.764 T + 731.85 T = 62207.25 + 236.808
T = 84.086 ° C approx 84°C