Answer: There are
of gas are in a container with a volume of 9.55 mL at 35 °C and a pressure of 895 mmHg
Explanation:
According to ideal gas equation:

P = pressure of gas = 895 mm Hg= 1.18 atm (760 mm Hg= 1 atm)
V = Volume of gas = 9.55 ml = 0.00955 L (1 L=1000ml)
n = number of moles = ?
R = gas constant =
T =temperature =


Thus there are
of gas are in a container with a volume of 9.55 mL at 35 °C and a pressure of 895 mmHg
Answer:
C6H12O6
Explanation:
I attached the method for solving above.
Answer:
The answer to your question is Al, Mg, Si, S, P
Explanation:
First ionization energy is the energy necessary to remove an electron from an atom in a gaseous form.
Element First ionization energy (kJ/mol)
Magnesium 737.7
Aluminum 577.5
Silicium 786.5
Phosphorus 1011.8
Sulfur 999.6
Order: Al, Mg, Si, S, P
Answer:
Explanation:
Sodium is both an electrolyte and mineral. It helps keep the water (the amount of fluid inside and outside the body's cells) and electrolyte balance of the body. Sodium is also important in how nerves and muscles work. Most of the sodium in the body (about 85%) is found in blood and lymph fluid.
To solve this problem, let us all convert the mass of
each element into number of moles using the formula:
moles = mass / molar mass
Where,
molar mass K = 39.10 g / mol
<span>molar mass Cl = 35.45 g / mol</span>
molar mass O = 16 g / mol
<span>and mass O = 13 g – 4.15 g
– 3.76 g = 5.09 g</span>
moles K = 4.15
g / (39.10 g / mol) = 0.106 mol
<span>moles Cl = 3.76 g / (35.45 g / mol) = 0.106 mol</span>
moles O = 5.09 g / (16 g /
mol) = 0.318 mol
The ratio becomes:
0.106 K: 0.106 Cl: 0.318 O
We divide all numbers with
the smallest number, in this case 0.106. This becomes:
K: Cl: 3O
Therefore the empirical formula
is:
