I believe the medulla is the answer.
Answer:
c. 298 K
Explanation:
Nernst equation is an equation used in electrochemistry that relates the reduction potential of a reaction with the standard potential, temperature and concentrations of the reactants in that are been reducted and oxidized. The formula is:
E = E° - RT / nF ln [Red] / [Ox]
<em>Where R is gas constant (8.314J/molK), T is absolute temperature (In Kelvin), n are moles of electrons and F is faraday constant (K/Volt*mol)</em>
<em />
In electrochemistry, standard temperature is taken as 298K. That means by assuming standard temperature we can substitute T as:
<h3>c. 298 K</h3>
Air is mainly composed of N2 (78%), O2 (21%) and other trace gases. Now, the total pressure of air is the sum of the partial pressures of the constituent gases. The partial pressure of each gas, for example say O2, can be expressed as:
p(O2) = mole fraction of O2 * P(total, air) ----(1)
Thus, the partial pressure is directly proportional to the total pressure. If we consider a sealed container then, as the temperature of air increases so will its pressure. Based on equation (1) an increase in the pressure of air should also increase the partial pressure of oxygen.
The unsaturated zone is the portion of the subsurface above the groundwater table. The soil and rock in this zone contains air as well as water in its pores. ... Unlike the aquifers of the saturated zone below, the unsaturated zone is not a source of readily available water for human consumption