Answer:
Explanation:
Using the principle of moment, assuming the rod is uniform rod of mass 1 kg
the center of mass of the rod will be at 1 m
assuming the system is in equilibrium,
clockwise moment = anticlockwise moment
let the distance of the man shoulder be x from the center of gravity and also is the pivot point
total mass of bucket + mass of honey = 2kg + 3 kg = 5 kg for rear bucket and
2kg + 5 kg = 7 kg for front bucket
( 5kg × ( 1+x)) + ( 1 kg × x) = 7 kg × ( 1 - x)
5 + 5 x + x = 7 - 7x
5 + 6x = 7 - 7x
6x + 7x = 7 - 5
13x = 2
x = 2 / 13 = 0.154 m
the honeybucket man's shoulder is 0.154 m from the center of the pole ( forward ).
A tsunami is a series of waves generated in an ocean or other body of water by a disturbance such as an earthquake, landslide, volcanic eruption, or meteorite impact. ... Undersea earthquakes, which typically occur at boundaries between Earth's tectonic plates, cause the water above to be moved up or down
I attached the missing picture.
The force of seat acting on the child is a reaction the force of child pressing down on the seat. This is the third Newton's law. The force of a child pressing down the seat and the force of the seat pushing up on the child are the same.
There two forces acting on the child. The first one is the gravitational force and the second one is centrifugal force. In this example, the force of gravity is always pulling down, but centrifugal force always acts away from the center of circular motion.
Part AFor point A we have:

In this case, the forces are aligned, centrifugal is pointing up and gravitational is pulling down.
Part BAt the point, B situation is a bit more complicated. In this case force of gravity and centrifugal force are not aligned. We have to look at y components of this forces, y-axis, in this case, is just pointing upward.
Part CThe child will stay in place at point A when centrifugal force and force of gravity are in balance: