Answer:
153.6 kN
Explanation:
The elastic constant k of the block is
k = E * A/l
k = 95*10^9 * 0.048*0.04/0.25 = 729.6 MN/m
0.12% of the original length is:
0.0012 * 0.25 m = 0.0003 m
Hooke's law:
F = x * k
Where x is the change in length
F = 0.0003 * 729.6*10^6 = 218.88 kN (maximum force admissible by deformation)
The compressive load will generate a stress of
σ = F / A
F = σ * A
F = 80*10^6 * 0.048 * 0.04 = 153.6 kN
The smallest admisible load is 153.6 kN
I think it is C) the resting position of the wave.
Answer:
The correct answer would be C. 5.0kg
Explanation:
The mass of an object never changes unless parts of the object are taken away. In other words, although the gravitational force is different on the moon then on the earth the mass of the object would remain the same.
Answer: Varying amounts of the Moon's lit surface being visible from Earth.
Explanation:
Phases of the moon can be defined as the different shapes of the moon visible from the Earth. This happens because sun lits up the face of moon and due to different position of moon in the orbit around earth, varying portion of the lit surface of the moon is visible from Earth. Refer to the diagram below:
Answer:
The air fraction to be removed is 0.11
Given:
Initial temperature, T =
= 283 K
Pressure, P = 250 kPa
Finally its temperature increases, T' =
= 318 K
Solution:
Using the ideal gas equation:
PV = mRT
where
P = Pressure
V = Volume
m = no. of moles of gas
R = Rydberg's Constant
T = Temperature
Now,
Considering the eqn at constant volume and pressure, we get:
mT = m'T'
Thus
(1)
Now, the fraction of the air to be removed for the maintenance of pressure at 250 kPa:

From eqn (1):

