Angle, θ2 at which the light leaves mirror 2 is 56°
<u>Explanation:</u>
Given-
θ1 = 64°
So, α will also be 64°
According to the figure:
α + β = 90°
So,
β = 90° - α
= 90° - 64°
= 26°
β + γ + 120° = 180°
γ = 180° - 120° - β
γ = 180° - 120° - 26°
γ = 34°
γ + δ = 90°
δ = 90° - γ
δ = 90° - 34°
δ = 56°
According to the law of reflection,
angle of incidence = angle of reflection
θ2 = δ = 56°
Therefore, angle θ2 at which the light leaves mirror 2 is 56°
In the diagram, the ship send sound(?) waves to the water, to determine if there is anything there. If there is something like a sunken ship shown in the diagram, the waves return in a shorter time hence you can understand if theres something or now. This is the principle of radars and sonars.
When dealing with multiple forces acting on a body, it is advisable to draw a free-body diagram like that shown in the picture. There are four forces acting on the box: weight (W) pointing straight down, normal force perpendicular to the slope denoted as Fn, force used to push the box upwards along the slope and the frictional force acting opposite to the direction of motion of the box denoted as Ff. Frictional force is equal to coefficient of kinetic friction (μk) multiplied with Fn.
∑Fy = Fn - mgcos30° = 0
Fn = (50)(9.81)(cos 16) = 471.5 N
When in motion, the net force is equal to mass times acceleration according to Newton's 2nd Law of Motion:
Fnet = F - μk*Fn - mgsin30° = ma
250 - (0.2)(471.5 N) - (50)(sin 16°) = (50)(a)
a = 2.84 m/s²
Still go straight but would obviously go up in speed!!
Hope this helps plz mark as brainlist and 5 star
Answer:
B train!
Explanation:
A train travelled at 40 km/hr. (120/3)
B train traveled at 45 km/hr (180/4)