1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mojhsa [17]
3 years ago
9

does increasing the frequency of a wave also increase its wavelength if not how are these quantities related​

Physics
1 answer:
Aleks [24]3 years ago
8 0

Answer: Increasing the frequency does not increase the wavelength. They are inversely related.

Explanation:

As wavelength increases, frequency decreases. If you look at a transverse wave and it has a long wavelength, there only a few waves produce. Which means there is less frequency produced. So as wavelength increases, frequency decreases. The other way around can work to. As frequency increases, wavelength decreases. They are inversely related.

You might be interested in
If an object force of 50 N is used to move an object a distance of 20 m, what distance must the object be moved if the input for
steposvetlana [31]

Answer:

\ d_{out} = 100 \ m.

Explanation:

Given data:

F_{in} = 50 \ \rm N

F_{out} = 10 \ \rm N

d_{in} = 20 \ m

Let the distance traveled by the object in the second case be d_{out}.

In the given problem, work done by the forces are same in both the cases.

Thus,

W_{in} = W_{out}

F_{in}.d_{in} = F_{out}.d_{out}

\Rightarrow \ d_{out} = \frac{F_{in}.d_{in}}{F_{out}}

\ d_{out} = \frac{50 \times 20}{10}

\ d_{out} = 100 \ m.

5 0
3 years ago
Bodies A and B have equal mass. Body B is initially at rest. Body A collides with body B in a one-dimensional elastic collision.
jek_recluse [69]
According to the statement " Collision <span>between two bodies in which the total kinetic energy of the two bodies after the collision is equal to their total kinetic energy before the collision."
The best answer is :
Option A " </span><span>BODY A COMES TO REST BODY B STARTS MOVING WITH INITIAL VELOCITY OF BODY A "</span>
4 0
3 years ago
Read 2 more answers
Consult Interactive Solution 10.37 to explore a model for solving this problem. A spring is compressed by 0.0647 m and is used t
padilas [110]

Answer:

\omega=32.14\ rad/s

Explanation:

Given that,

The compression in the spring, x = 0.0647 m

Speed of the object, v = 2.08 m/s

To find,

Angular frequency of the object.

Solution,

We know that the elation between the amplitude and the angular frequency in SHM is given by :

v=\omega\times A

A is the amplitude

In case of spring the compression in the spring is equal to its amplitude

\omega=\dfrac{v}{A}

\omega=\dfrac{2.08\ m/s}{0.0647\ m}

\omega=32.14\ rad/s

So, the angular frequency of the spring is 32.14 rad/s.

4 0
3 years ago
Assuming a 8 kilogram bowling ball moving at 2 m/s bounces off a spring at the same speed that had before bouncing what is the a
Naya [18.7K]

a) 32 kg m/s

Assuming the spring is initially at rest, the total momentum of the system before the collision is given only by the momentum of the bowling ball:

p_i = m u = (8 kg)(2 m/s)=16 kg m/s

The ball bounces off at the same speed had before, but the new velocity has a negative sign (since the direction is opposite to the initial direction). So, the new momentum of the ball is:

p_{fB}=m v_b =(8 kg)(-2 m/s)=-16 kg m/s

The final momentum after the collision is the sum of the momenta of the ball and off the spring:

p_f = p_{fB}+p_{fS}

where p_{fS} is the momentum of the spring. For the conservation of momentum,

p_i = p_f\\p_i = p_{fB}+p_{fS}\\p_{fS}=p_i -p_{fB}=16 kg m/s -(-16 kg m/s)=32 kg m/s


b) -32 kg m/s

The change in momentum of bowling ball is given by the difference between its final momentum and initial momentum:

\Delta p=p_{fb}-p_i=-16 kg m/s - 16 kg m/s=-32 kg m/s


c) 64 N

The change in momentum is equal to the product between the average force and the time of the interaction:

\Delta p=F \Delta t

Since we know \Delta t=0.5 s, we can find the magnitude of the force:

F=\frac{\Delta p}{\Delta t}=\frac{-32 kg m/s}{0.5 s}=-64 N

The negative sign simply means that the direction of the force is opposite to the initial direction of the ball.


d) The force calculated in the previous step (64 N) is larger than the force of 32 N.

5 0
3 years ago
A bullet is shot from a rifle with a speed of 720 m/s. What time is required for the bullet to strike a target 3240 meters away
Alik [6]
4.5 seconds you devoured 3240/720=4.5
7 0
3 years ago
Read 2 more answers
Other questions:
  • What are 2 ways electromagnets are used
    5·1 answer
  • Darby is taking a hike. She sees a pile of broken rocks near the base of a cliff. The area is a dangerous place for _____. glaci
    10·2 answers
  • Please help me:(<br> I need help with this question
    12·1 answer
  • The atoms of a molecule come from two or more?
    7·2 answers
  • What are the four basic units of electricity? provide the variable name and symbol, and unit name and symbol.
    14·2 answers
  • The shaft of radius c is subjected to a distributed torque t, measured as torque/unit length of shaft. Shaft A B of length L, fi
    5·1 answer
  • In which era did the universe’s clouds start to condense and the universe became transparent for the first time?
    9·1 answer
  • Which of the following are vector quantities? Select all that apply.
    6·1 answer
  • an athlete whirls an 8.71 kg hammer tied to the end of a 1.5 m chain in a simple horizontal circle where you should ignore any v
    14·1 answer
  • How can the pilot determine, for an ILS runway equipped with MALSR, that there may be a penetration of the obstacle identificati
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!