Low blood pressure. The person could faint and have an irregular heartbeat.
They are positive and remain inside the nucleus.
A pendulum is not a wave.
-- A pendulum doesn't have a 'wavelength'.
-- There's no way to define how many of its "waves" pass a point
every second.
-- Whatever you say is the speed of the pendulum, that speed
can only be true at one or two points in the pendulum's swing,
and it's different everywhere else in the swing.
-- The frequency of a pendulum depends only on the length
of the string from which it hangs.
If you take the given information and try to apply wave motion to it:
Wave speed = (wavelength) x (frequency)
Frequency = (speed) / (wavelength) ,
you would end up with
Frequency = (30 meter/sec) / (0.35 meter) = 85.7 Hz
Have you ever seen anything that could be described as
a pendulum, swinging or even wiggling back and forth
85 times every second ? ! ? That's pretty absurd.
This math is not applicable to the pendulum.
Previous rocks melt and collide and to form igneous rocks.
Igneous rocks disintegrate due to weather disruptions and get carried away by water, where they form sedimentary rock strata by lithification.
Igneous and sedimentary change by heat and pressure to form metamorphic rocks.
Metamorphic rocks melt and become igneous rocks.
Answer:
Explanation:
Applied force, F = 18 N
Coefficient of static friction, μs = 0.4
Coefficient of kinetic friction, μs = 0.3
θ = 27°
Let N be the normal reaction of the wall acting on the block and m be the mass of block.
Resolve the components of force F.
As the block is in the horizontal equilibrium, so
F Cos 27° = N
N = 18 Cos 27° = 16.04 N
As the block does not slide so it means that the syatic friction force acting on the block balances the downwards forces acting on the block .
The force of static friction is μs x N = 0.4 x 16.04 = 6.42 N .... (1)
The vertically downward force acting on the block is mg - F Sin 27°
= mg - 18 Sin 27° = mg - 8.172 ... (2)
Now by equating the forces from equation (1) and (2), we get
mg - 8.172 = 6.42
mg = 14.592
m x 9.8 = 14.592
m = 1.49 kg
Thus, the mass of block is 1.5 kg.