Force on a charge placed in electric field is given by

here 

magnitude of force is given by


Direction of force is opposite to electric field direction as it is a negative charge
so direction is towards EAST
<u>Answers</u>
(a) 6.75 Joules.
(b) 5.27 m/s
(c) 0.75 Joules
<u>Explanation</u>
Kinetic energy is the energy possessed by a body in motion.
(a) its kinetic energy at A?
K.E = 1/2 mv²
= 1/2 × 0.54 × 5²
= 6.75 Joules.
(b) its speed at point B?
K.E = 1/2 mv²
7.5 = 1/2 × 0.54 × V²
V² = 7.5 ÷ 0.27
= 27.77778
V = √27.77778
= 5.27 m/s
(c) the total work done on the particle as it moves from A to B?
Work done = 7.5 - 6.75
= 0.75 Joules
Answer:
v = K √(E / ρ)
Explanation:
Modulus of elasticity has units of N/m², or kg/m/s².
Density has units of kg/m³.
Velocity has units of m/s.
If we divide modulus of elasticity by density, we can eliminate kg:
E / ρ = [kg/m/s²] / [kg/m³]
E / ρ = [m²/s²]
Taking the square root gets us units of velocity:
√(E / ρ) = [m/s]
Multiply by the constant K:
v = K √(E / ρ)
F - False.
Its greatest kinetic energy is at the point of release.
It has the least kinetic energy, zero, at its highest point in its path.