Answer:

3257806.62409 m/s
Explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
M = Mass of Sun = 
r = Radius of Star = 20 km
u = Initial velocity = 0
v = Final velocity
s = Displacement = 16 m
a = Acceleration
Gravitational acceleration is given by

The gravitational acceleration at the surface of such a star is 

The velocity of the object would be 3257806.62409 m/s
(2.00 hours) x (3,600 seconds/hour) = 7,200 seconds
(9.00 minutes) x (60 seconds/minute) = 540 seconds
The record time = (7,200 + 540 + 21) = 7,761 seconds
Distance = (speed) x (time)
= (5.436 m/s) x (7,761 sec) =<span> 42,188.8 meters
________________________________________________
</span>
The official length of the marathon run is 42,195 meters.
If we divide that by the record time in the question, we get
5.4368... m/s .
Rounded to the nearest thousandth, that's 5.437 m/s.
If the question had given the speed as 5.437 instead of 5.436 ,
then we would have calculated the distance to be
(5.437 m/s) x (7,761 sec) =<span> 42,196.6 meters,
4.6 meters closer to the official distance than the answer we did get.
</span>
Answer:At the top of the page is a transvers wave
C= crest
B= wavelingth
D= trough
A= amplatud
The next wave is a longitudinal wave
Answer:
i. 15.6 m/s
ii. I = 1.44 KNs
Explanation:
The impulse, I, on a body is the product of force applied on it and the time it acts.
i.e I = F x t
Impulse is sometimes expressed as the change in momentum of a body. It is measured in Ns.
i. mass, m, of the player = 92 kg
initial velocity of the player, u = 9.4 m/s
final velocity of the player, v = 6.2 m/s
Since he bounces back on hitting the pole, then the sign of initial and final velocities are of opposite sign.
So that,
change in velocity of the player = final velocity - initial velocity
= 6.2 - (-9.4)
= 6.2 + 9.4
= 15.6 m/s
change in velocity of the player is 15.6 m/s
ii. Impulse, I = m(v - u)
= 92 x 15.6
= 1435.2
Impulse on the player is 1.44 KNs.
A
Explanation:
I hate tiny links OMLJDJDJDJSJDJJDJDJ