Answer:
t = 5.89 s
Explanation:
To calculate the time, we need the radius of the pulley and the radius of the sphere which was not given in the question.
Let us assume that the radius of the pulley (
) = 0.4 m
Let the radius of the sphere (r) = 0.5 m
w = angular speed = 150 rev/min = (150 × 2π / 60) rad/s = 15.708 rad/s
Tension (T) = 20 N
mass (m) = 3 kg each


Substituting values:

Answer:
The principle of momentum conservation states that if there no external force the total momentum of the system before and after the collision is conserved.
Since momentum is a vector, we should investigate the directions and magnitudes of initial and final momentum.

If the first ball hits the second ball with an angle, we should separate the x- and y-components of the momentum (or velocity), and apply conservation of momentum separately on x- and y-directions.
The process that explains why one part of the earth's surface is arid and dry and a nearby part is lush and wet is areal differentiation. It is<span> an approach to geography that shows </span>the dependence of the distribution of physical and human phenomena and the relation to each other from the physical location. Areal integration on the other hand is the approach that studies how places interact with each other.
Her speed was 7.27 meters per second
Answer:
KE = 1.75 J
Explanation:
given,
mass of ball, m₁ = 300 g = 0.3 Kg
mass of ball 2, m₂ = 600 g = 0.6 Kg
length of the rod = 40 cm = 0.4 m
Angular speed = 100 rpm= 
=10.47\ rad/s
now, finding the position of center of mass of the system
r₁ + r₂ = 0.4 m.....(1)
equating momentum about center of mass
m₁r₁ = m₂ r₂
0.3 x r₁ = 0.6 r₂
r₁ = 2 r₂
Putting value in equation 1
2 r₂ + r₂ = 0.4
r₂ = 0.4/3
r₁ = 0.8/3
now, calculation of rotational energy




KE = 1.75 J
the rotational kinetic energy is equal to 1.75 J