Answer:
absorption and insolation.
Explanation:
Power is equal to energy per unit time. In this case, power is proportional to energy while is inversely proportional to time,on the other hand. Given the two swimmers exerts same amount of energy but the faster swimmer just does things in faster time, then the faster swimmer should develop more power from shorter time
<h2>
Answer:5

,133.6

,51.18

</h2>
Explanation:
Let
,
be the horizontal and vertical components of velocity.
Question a:
Horizontal component of velocity is the ratio of range and time of flight.
So,horizontal component of velocity is 
So,
Question b:
Time of flight=
So,
Maximum height is given by 
So,maximum height is 
Question c:
The vertical velocity is already calculated in Question b.

Complete Question
The diagram for this question is shown on the first uploaded image
Answer:
a E =
b E =
c E = 0 N/C
d 
e 
f V = 
g 
h 
i 
Explanation:
From the question we are given that
The first charge 
The second charge 
The first radius 
The second radius 

And ![Potential \ Difference = \frac{1}{4\pi \epsilon_0} [\frac{q_1 }{r}+\frac{q_2}{R_2} ]](https://tex.z-dn.net/?f=Potential%20%5C%20Difference%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%20%5Cepsilon_0%7D%20%20%20%5B%5Cfrac%7Bq_1%20%7D%7Br%7D%2B%5Cfrac%7Bq_2%7D%7BR_2%7D%20%5D)
The objective is to obtain the the magnitude of electric for different cases
And the potential difference for other cases
Considering a
r = 4.00 m


Considering b

This implies that the electric field would be

This because it the electric filed of the charge which is below it in distance that it would feel

= 
Considering c
r = 0.200 m
=> 
The electric field = 0
This is because the both charge are above it in terms of distance so it wont feel the effect of their electric field
Considering d
r = 4.00 m
=> 
Now the potential difference is

This so because the distance between the charge we are considering is further than the two charges given
Considering e
r = 1.00 m 
![V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2} ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{1.00} \frac{1.00*10^{-6}}{1.00} ] = 26.79 *10^3 V](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%20%5Cepsilon_0%7D%20%5B%5Cfrac%7Bq_1%7D%7Br%7D%20%2B%5Cfrac%7Bq_2%7D%7BR_2%7D%20%20%5D%20%3D%208.99%2A10%5E9%20%2A%20%5B%5Cfrac%7B2.00%2A10%5E%7B-6%7D%7D%7B1.00%7D%20%5Cfrac%7B1.00%2A10%5E%7B-6%7D%7D%7B1.00%7D%20%5D%20%3D%2026.79%20%2A10%5E3%20V)
Considering f

![V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2} ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.700} \frac{1.0*10^{-6}}{1.00} ] = 34.67 *10^3 V](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%20%5Cepsilon_0%7D%20%5B%5Cfrac%7Bq_1%7D%7Br%7D%20%2B%5Cfrac%7Bq_2%7D%7BR_2%7D%20%20%5D%20%3D%208.99%2A10%5E9%20%2A%20%5B%5Cfrac%7B2.00%2A10%5E%7B-6%7D%7D%7B0.700%7D%20%5Cfrac%7B1.0%2A10%5E%7B-6%7D%7D%7B1.00%7D%20%5D%20%3D%2034.67%20%2A10%5E3%20V)
Considering g

![V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2} ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%20%5Cepsilon_0%7D%20%5B%5Cfrac%7Bq_1%7D%7Br%7D%20%2B%5Cfrac%7Bq_2%7D%7BR_2%7D%20%20%5D%20%3D%208.99%2A10%5E9%20%2A%20%5B%5Cfrac%7B2.00%2A10%5E%7B-6%7D%7D%7B0.500%7D%20%5Cfrac%7B1.0%2A10%5E%7B-6%7D%7D%7B1.00%7D%20%5D%20%3D%2044.95%20%2A10%5E3%20V)
Considering h

![V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{R_1} +\frac{q_2}{R_2} ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%20%5Cepsilon_0%7D%20%5B%5Cfrac%7Bq_1%7D%7BR_1%7D%20%2B%5Cfrac%7Bq_2%7D%7BR_2%7D%20%20%5D%20%3D%208.99%2A10%5E9%20%2A%20%5B%5Cfrac%7B2.00%2A10%5E%7B-6%7D%7D%7B0.500%7D%20%5Cfrac%7B1.0%2A10%5E%7B-6%7D%7D%7B1.00%7D%20%5D%20%3D%2044.95%20%2A10%5E3%20V)
Considering i

![V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{R_1} +\frac{q_2}{R_2} ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%20%5Cepsilon_0%7D%20%5B%5Cfrac%7Bq_1%7D%7BR_1%7D%20%2B%5Cfrac%7Bq_2%7D%7BR_2%7D%20%20%5D%20%3D%208.99%2A10%5E9%20%2A%20%5B%5Cfrac%7B2.00%2A10%5E%7B-6%7D%7D%7B0.500%7D%20%5Cfrac%7B1.0%2A10%5E%7B-6%7D%7D%7B1.00%7D%20%5D%20%3D%2044.95%20%2A10%5E3%20V)
<u>Answer:</u> The elevation in boiling point is 1.024°C.
<u>Explanation:</u>
To calculate the elevation in boiling point, we use the equation:

where,
i = Van't Hoff factor = 2 (for NaCl)
= change in boiling point = ?
= boiling point constant = 
m = molality = 1.0 m
Putting values in above equation, we get:

Hence, the elevation in boiling point is 1.024°C.