Answer:Racquet force is twice of Player force
Explanation:
Given
ball arrives at a speed of 
ball returned with speed of 
average Force imparted by racquet on the ball is given by

where 
time of contact of ball with racquet


When it land on the player hand its final velocity becomes zero and time of contact is same as of racquet


From 1 and 2 we get

Hence the magnitude of Force by racquet is twice the Force by player
Answer:
≅50°
Explanation:
We have a bullet flying through the air with only gravity pulling it down, so let's use one of our kinematic equations:
Δx=V₀t+at²/2
And since we're using Δx, V₀ should really be the initial velocity in the x-direction. So:
Δx=(V₀cosθ)t+at²/2
Now luckily we are given everything we need to solve (or you found the info before posting here):
- Δx=760 m
- V₀=87 m/s
- t=13.6 s
- a=g=-9.8 m/s²; however, at 760 m, the acceleration of the bullet is 0 because it has already hit the ground at this point!
With that we can plug the values in to get:




A baseball would hit the bat harder. This is because the baseball is a lot heavier and more dense than the plastic ball. The keyword that you're looking for is density. The baseball is dense.
The image of the triangle is to be formed by rotating ΔXYZ 180 degrees about the (2, -3) as shown in the graph.
<h3>What is Geometry?</h3>
It deals with the size of geometry, region, and density of the different forms both 2D and 3D.
Triangle XYZ has vertices X(0, 2), Y(4, 4), and Z(3, –1).
If the triangle is ΔXYZ. Then the image of the triangle is to be formed by rotating ΔXYZ 180 degrees about the (2, -3) as shown in the graph.
More about the geometry link is given below.
brainly.com/question/7558603
#SPJ1
If you are designing a roller coaster that goes upside down, you may consider of course seat belts or something that goes around you to keep yourself safe.