Answer:
10
Explanation:
I did that already. You got beo
Explanation:
Since HF is a weak acid, the use of an ICE table is required to find the pH. The question gives us the concentration of the HF.
HF+H2O⇌H3O++F−HF+H2O⇌H3O++F−
Initial0.3 M-0 M0 MChange- X-+ X+XEquilibrium0.3 - X-X MX M
Writing the information from the ICE Table in Equation form yields
6.6×10−4=x20.3−x6.6×10−4=x20.3−x
Manipulating the equation to get everything on one side yields
0=x2+6.6×10−4x−1.98×10−40=x2+6.6×10−4x−1.98×10−4
Now this information is plugged into the quadratic formula to give
x=−6.6×10−4±(6.6×10−4)2−4(1)(−1.98×10−4)−−−−−−−−−−−−−−−−−−−−−−−−−−−−√2x=−6.6×10−4±(6.6×10−4)2−4(1)(−1.98×10−4)2
The quadratic formula yields that x=0.013745 and x=-0.014405
However we can rule out x=-0.014405 because there cannot be negative concentrations. Therefore to get the pH we plug the concentration of H3O+ into the equation pH=-log(0.013745) and get pH=1.86
The first reason to repeat experiments is simply to verify results. Different science disciplines have different criteria for determining what good results are. Biological assays, for example must be done in at least triplicate to generate acceptable data. Science is built on the assumption that published experimental protocols are repeatable.
2) The next reason to repeat experiments is to develop skills necessary to extend established methods and develop new experiments. “Practice make perfect” is true for the concert hall and the chemical laboratory.
3) Refining experimental observations is another reason to repeat. Maybe you did not follow the progress of the reaction like you should have.
4) Another reason to repeat experiments is to study and/or improve them in way. In the synthetic chemistry laboratory, for example, there is always a desire to improve the yield of a synthetic step. Will certain changes in the experimental conditions lead to a better yield? The only way to find out is to try it! The scientific method informs us that it is best to only make one change at a time.
5) The final reason to repeat an extraction, chromatographic or synthetic protocol is to produce more of your target substance. This is sometimes referred to scale-up.
No. The only thing that changed was the looks of the gasoline, not the chemical components.
They define acids as proton donors, and bases as proton acceptors
If you were to have:
HNO3 + H2O -> H3O+. + NO3-
You can see that the nitric acid (HNO3) gave a hydrogen ion which has 1 proton, 0 neutrons and 0 electrons to the water so we just say that it gave a proton.
Now let's see a base
NH3 + H2O -> NH4+ + OH-
Now, you can see that the ammonia (NH3) gained a hydrogen ion (proton) from the water to become ammonium(NH4). which means it accepted a proton
That's basically it. Feel free to ask if you have any further questions