Well, the diameter of a circle is simply a length, so your measurement will have units of length. We just have to find an answer that has only units of length.
A). gram, second . . . mass and time. That can't be it.
B). kilogram, ampere . . . mass and current. That can't be it.
C). centimeter, meter . . . both lengths. This one is looking good.
D). candela, mole . . . light intensity and some chemical thing. That can't be it.
So it can't be anything else on this list but <em>C</em> .
Answer:
4 m/s
Explanation:
Momentum is conserved.
m₁ v₁ + m₂ v₂ = (m₁ + m₂) v
(50)(5) + (20)(1.5) = (50 + 20) v
v = 4
The final velocity is 4 m/s.
This is just testing your ability to recall that kinetic energy is given by:
<span>k.e. = ½mv² </span>
<span>where m is the mass and v is the velocity of the particle. </span>
<span>The frequency of the light is redundant information. </span>
<span>Here, you are given m = 9.1 * 10^-31 kg and v = 7.00 * 10^5 m/s. </span>
<span>Just plug in the values: </span>
<span>k.e. = ½ * 9.1 * 10^-31 * (7.00 * 10^5)² </span>
<span>k.e. = 2.23 * 10^-19 J
so it will be d:2.2*10^-19 J</span>
Data charts would use descriptive statistics to show accurate reading measured throughout the lab. Charts and graphs can also be used to show the progress and result of the lab.