1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Afina-wow [57]
3 years ago
10

A pendulum is raised 1.5 cm and allowed to fall. if air resistance is negligible, how high will the pendulum rise on the other s

ide?
Physics
2 answers:
padilas [110]3 years ago
6 0

Answer:

It will rise to same height (1.5 cm) on the other side of the pendulum.

Explanation:

When the pendulum moves, its kinetic energy is maximum at its mean position and potential energy is zero. While at both ends potential energy is maximum and the kinetic energy is minimum that is zero.

The energy is conserved during the process. So, if the friction is neglected, then there must be no loss of energy and the pendulum must rise to the same height on the other hand, as well. That is <u>1.5 cm</u>.

lions [1.4K]3 years ago
3 0
It should go to the same height if its not interacting with air
You might be interested in
What will be the force if the particle's charge is tripled and the electric field strength is halved? Give your answer in terms
Alexus [3.1K]

Answer:

1.5F

Explanation:

Using

E= F/q

Where F= force

E= electric field

q=charge

F= Eq

So if qis tripled and E is halved we have

F= (E/2)3q

F= 1.5Eq=>> 1.5F

4 0
3 years ago
_________ = voltage / resistance <br> a. power <br> b. energy <br> c. charge <br> d. current
Fittoniya [83]

c.charge due to the reaction process between the two



4 0
3 years ago
A proton, an electron, and a helium nucleus all move at speed v. Rank their de Broglie wavelengths from largest to smallest. Wri
MatroZZZ [7]

Answer:

The correct option is 'c':electron,proton,helium nucleus

Explanation:

The De-Broglie's wavelength of particle is given by

\lambda =\frac{h}{mv}

Thus we can see that wavelength is inversely related to mass of the particle since 'h' (Plank's constant) and velocity is same for all the particles  

Thus we conclude that the the lightest particle will have the most wavelength

Electron being the lightest of the 3 particles will have the largest wavelength thus the correct option is 'c'. Since electron has the largest wavelength followed by proton and the least wavelength among the 3 is of helium.

6 0
3 years ago
16
seropon [69]

Answer:  Kinetic energy is proportional to the square of the velocity. If the velocity of an object doubles, the kinetic energy increases by a factor of four. Kinetic energy is proportional to the square

of the velocity. If the velocity of an object

doubles, the kinetic energy increases by a

factor of four.

• Kinetic energy is proportional to the mass. If

a bowling ball and a ping pong ball have the

same velocity, the bowling ball has much

larger kinetic energy.

• Kinetic energy is always positive.

• unit : Joule (J) = kg m

2

/s

2 Example:

If we drop a 3-kg ball from a height of h = 10 m,

the velocity when the ball hits the ground is

given by: v 2 = v0 2 +2a(y− y0 )= 0−2g(0−h)v= 2gh= 2(9.8 m/s 2 )(10 m)=14 m /s Initial:   k = 1 2 mv 2 = 0 Final:    k = 1 2 mv 2= 1 2 (3 kg)(14 m/s) 2= 294 J So as the ball falls, its kinetic energy increases. It is the gravitational force that accelerates the ball, causing the speed to increase. The increase in speed also increases the kinetic energy. The process of a force changing the kinetic energy of an object is called work. Work: Work is the energy transferred to or from an object by mean of a force acting on the object.• energy transferred to an object is positive work, e.g. gravity performs positive work on a

falling ball by transferring energy to the ball, causing the ball to speed up.• energy transferred from an object is negative work, e.g. gravity performs negative work on a ball tossed up by transferring energy from the ball, causing the ball to slow down.• both kinetic energy and work are scalars.• unit: J Work Energy Theorem: The work done is equal to the change in the kinetic energy: ∆K = K f − K i = W In the above example with the ball falling from a height of h = 10 m, the work done by gravity: W = ∆k = k f −k i = 294 J− 0J = 294 J. If a ball rises to a height of h =10 m, the work done by gravity: W = ∆k = k f −k i = 0J−294 J = −294 J. Work Done by a Force: Consider a box being dragged a distance d across a frictionless floor:

d F y x θ v 2 = v0 2 + 2ax (x − x0 ) v 2 = v0 2 +2ax d 1 2 mv 2 = 1 2 mv0 2 +max d 1 2 mv 2 − 1 2 mv0 2 = max d k f −k i = (Fcosθ)d ∴W = (Fcosθ)d• θ is the angle between the force vector and the direction of motion.• If the force is perpendicular to the direction of motion, then the work done: W =(Fcosθ)d = Fdcos90°= Fd×0= 0.• The work energy theorem and the relationship between work and force are valid only if the force does not cause any other form of energy to change, e. g. we can not apply the theorem when friction is

involved because it causes a change in the thermal energy (temperature). Work Done by Multiple Forces: The total work done by many forces acting on an object:Wtot = F1 cosθ 1 d+F2 cosθ 2 d+ F3 cosθ 3 d+L where the angles are the angle between each force and the direction of motion.  The total work is just the sum of individual work from each force:Wtot =W1 +W2 +W3 +L The work energy theorem relates the changes  in the kinetic energy to the total work performed on the object: ∆K =Wtot Example: A 3-kg box initially at rest slides 3 m down a frictionless 30° incline.  What is the work done on the object?  What is the kinetic energy and speed at the bottom?

x y N φ φ mg• The work done is performed by the force in the x direction since there is no motion in the y direction: W = F x d =(mgsinφ)d =(3 kg)(9.8 m/s 2 )(sin30°)(3 m) = 44 J Alternatively, W =(Fcosθ)d = Fcos(90°−φ)d = FsinφdH The first method of using the component of the force in the direction of motion for the calculation is easier.

8 0
3 years ago
Two vehicles approach an intersection: a truck moving eastbound at 16.0 m/s and an SUV moving southbound at 20.0 m/s. Suppose th
mario62 [17]

Answer:25.61 m/s

Explanation:

Given

truck is moving eastbound with a velocity of 16 m/s

Velocity of truck v_t=16\hat{i}

SUV is moving south with a velocity of 20 m/s

Velocity of SUV in vector form v_s=-20\hat{j}

Velocity of truck relative to the SUV

v_{ts}=v_{t}-v_s

v_{ts}=16\hat{i}-(-20\hat{j})

Magnitude of relative velocity is

|v_{ts}|=\sqrt{16^2+20^2}

|v_{ts}|=25.61\ m/s                                                  

5 0
3 years ago
Other questions:
  • A basketball referee tosses the ball straight up for the starting tipoff. at what velocity must a basketball player leave the gr
    14·1 answer
  • How many electrons are there in 3.5 x 10" C?
    7·1 answer
  • Compute VO when Vin = 0.5 V, in two different ways: a) using the equation VO = G (V+-V-) with G = 106; and b) using the Golden R
    9·1 answer
  • If a tree falls in the middle of the woods and nobody is around to hear it, does it make a sound?
    5·2 answers
  • From the illustration of the potassium atom, fill in the periodic table selection.
    14·1 answer
  • What does digital media allow you to do?
    15·1 answer
  • А masd<br>Of 500kg a raised to a height of 6m In 30s<br>Find (a) Workdone .​
    13·1 answer
  • First right is brainliest, plz help:)
    12·1 answer
  • How do I solve this?​
    15·1 answer
  • State advantages of ultrasonic sound in determining the depth of the ocean ​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!