Answer:
- The magnitude of the vector
is 107.76 m
Explanation:
To find the components of the vectors we can use:

where
is the magnitude of the vector, and θ is the angle over the positive x axis.
The negative x axis is displaced 180 ° over the positive x axis, so, we can take:






Now, we can perform vector addition. Taking two vectors, the vector addition is performed:

So, for our vectors:


To find the magnitude of this vector, we can use the Pythagorean Theorem



And this is the magnitude we are looking for.
1) they are attracting because if you look at the arrows they’re all pointing the same way.
2) if the magnet was turned around they would do the opposite and not attract ( this is called repulsion)
3) magnetic pole
4)magnet
5) magnetic force
6) magnetism
Hope this helps
Answer:
The rate at which radar must rotate is 0.335 rad/s.
Explanation:
Given that,
Velocity = 65 m/h = 29.0576 m/s
Angle = 15°
Suppose, the radius given by

We need to calculate the rate at which radar must rotate
Using formula of linear velocity


Where, v = velocity
r = radius
Put the value into the formula


Hence, The rate at which radar must rotate is 0.335 rad/s.
As the speed of airplane is change due to jet stream
So the net speed is given as

now we can rearrange it as

now by the formula of vector difference we have

now plug in all values
![v_{plane} = \sqrt{365^2 + 136.73^2 - 2* 365* 136.73*cos22}[tex]v_{plane} = 243.7 km/hr](https://tex.z-dn.net/?f=v_%7Bplane%7D%20%3D%20%5Csqrt%7B365%5E2%20%2B%20136.73%5E2%20-%202%2A%20365%2A%20136.73%2Acos22%7D%3C%2Fp%3E%3Cp%3E%5Btex%5Dv_%7Bplane%7D%20%3D%20243.7%20km%2Fhr)
so above is the speed of the plane