Answer:
1/2mv² = ke²
Explanation:
Let's suppose the material in question is a spring with spring constant k, mass m and position k, the kinetic energy possessed by the string will be;
K.E = 1/2mass×velocity² i.e 1/2mv²
Its elastic potential energy will be the work done on the spring when stretched which is equal to 1/2kx²
E.P = 1/2kx²
The equation describing the case where the kinetic energy is twice the elastic potential energy will be;
K.E = 2EP... 1)
Substituting the KE and EP formula into (1), we have;
1/2mv² = 2(1/2ke²)
1/2mv² = ke² which gives the required equation
When block is pushed upwards along the inclined plane
the net force applied on the block will be given as

here we know that
m = 75 kg


now plug in all values into this


now for finding the power is given as



The acceleration of the motion tells us about the net force acting on the body
The speed of light to be slightly less in atmosphere then in vacuum because of absorption and re-emission of light by the atmospheric molecules occurred when light travels through a material
<u>Explanation:</u>
When light passes through atmosphere, it interacts or transmits through the transparent molecules in atmosphere. In this process of transmission through atmosphere, the light will be getting absorbed by them and some will get re-emitted or refracted depending upon wavelength.
But in vacuum the absence of any kind of particles will lead to no interaction and no energy loss, thus the speed of the light will be same in vacuum while due to interactions with molecules of atmosphere, there speed will be slightly less compared to in vacuum.