Answer:
The force of impact of the water bottle is F = 13,475 N
Explanation:
Given data,
The height of the antenna, h = 275 m
The mass of the 1 L water bottle, m = 1 kg
Let the bottle moves distance immediately after the impact is, d = 0.2 m
The force exerted by the bottle on the bushes at the ground is given by the formula,
F = mgh / d
Substituting the values
F = 1 x 9.8 x 275 / 0.2
= 13,475 N
The value of the force of impact can be reduced by increasing the value of d, it is like the lowering the hand along with the motion of the ball to catch it thereby reduce the force of impact.
The force of impact of the water bottle is F = 13,475 N
Answer: be found in group 17 and be highly reactive
Explanation:
Elements are distributed in groups and periods in a periodic table.
Elements that belong to same groups will show similar chemical properties because they have same number of valence electrons.
Flourine, chlorine, bromine and iodine are elements which belong to Group 17. All of them contain 7 valence electrons each and need one electron to complete their octet.
The chemical reactivity of elements is governed by the valence electrons present in the element and thus all of them are highly reactive.
Answer:
What table I don’t see any table
Answer: e. P/2
Explanation:
For ideal gases, we have the relation:
P*V = n*R*T
where:
n = number of mols
R = Gas constant
T = temperature
V = volume
P = pressure.
We know that for sample A, we have n moles, a temperature T and a volume V, then the pressure of this sample will be:
Pa = (n*R*T)/V.
For sample B, we have:
n/2 moles, temperature T/2 and a volume V/2, then the pressure will be:
Pb = (n/2)*R*(T/2)*(2/V) = (n*R*T/V)*(2/4)
and:
(n*R*T/V) = Pa
Then we can replace it and we get:
Pb = (n*R*T/V)*(2/4) = Pa*(2/4) = Pa*(1/2) = Pa/2.
Then the correct option is e.