According to Coulomb's Law , The size of the force varies inversely as the square of the distance between the two charges. So ,if the distance between the two charges is doubled, the electrostatic force will become weak by one fourth of the original force.
Answer:
a) F = 3.2 10⁻¹⁰ N
, b) v = 9.9 10⁷ m / s
Explanation:
a) The electric force is
F = q E
The electric field is related to the potential reference
V = E d
E = V / d
Let's replace
F = e V / d
Let's calculate
F = 1.6 10⁻¹⁹ 28 10³ / 1.4 10⁻²
F = 3.2 10⁻¹⁰ N
b) For this part we can use kinematics
v² = v₀ + 2 a d
v = √ 2 ad
Acceleration can be found with Newton's second law
e V / d = m a
a = e / m V / d
a = 1.6 10⁻¹⁹ / 9.1 10⁻³¹ 28 10³ / 1.4 10⁻²
a = 3,516 10⁻¹⁷ m / s²
Let's calculate the speed
v = √ (2 3,516 10¹⁷ 1.4 10⁻²)
v = √ (98,448 10¹⁴)
v = 9.9 10⁷ m / s
Answer:
option D
Explanation:
given.
horizontal velocity of arrow and a ball given as 50 m/s and 44 m/s respectively from the top of a building over flat ground.
In vertical direction, they are both identical
In vertical direction the initial velocity of arrow and a ball is 0 m/s
Their acceleration due to gravity is same for both arrow and a ball 9.8 m/s²
they will react bottom at the same time
time of flight is same for both
now,
In horizontal direction,
distance = speed × time
Since speed is more for arrow, it will travel more horizontal distance at the same time.
the correct answer is option D
Answer:
Explanation:
the spherical mirror can form an image even if it is cut in half horizontally , but the image formed may be blurred.
pls mark as brainliest if you find it helpful
An object that absorbs all radiation falling on it, at all wavelengths, is called a black body. When a black body is at a uniform temperature, its emission has a characteristic frequency distribution that depends on the temperature. Its emission is called black-body radiation
hope it helps