Answer:
Explanation:
Magnetic field near current carrying wire
= 
i is current , r is distance from wire
B = 10⁻⁷ x 
force on second wire per unit length
B I L , I is current in second wire , L is length of wire
= 10⁻⁷ x
x 33 x 1
= 3234 x 
This should balance weight of second wire per unit length
3234 x
= .075
r =
x 10⁻⁷
= .0043 m
= .43 cm .
<h2>What is an electric fuse?</h2><h3>
Answer: Electric fuse is a safety device used to limit the current in an electric circuit which melts and breaks the circuit whenever there is an excess flow of current through the circuit.</h3><h2>What is the working principle of electric fuse?</h2><h3>An electric fuse is based on the principle of heating effect of electric current. It is made up of thin metallic wire of non-combustible material. A fuse is always connected between the ends of the terminal in a series connection with the circuit.</h3>
Answer:

Explanation:
We are given that
Surface area of membrane=
Thickness of membrane=
Assume that membrane behave like a parallel plate capacitor.
Dielectric constant=5.9
Potential difference between surfaces=85.9 mV
We have to find the charge resides on the outer surface of membrane.
Capacitance between parallel plate capacitor is given by

Substitute the values then we get
Capacitance between parallel plate capacitor=

V=


Hence, the charge resides on the outer surface=
Answer:
P = 0.25 W
Explanation:
Given that,
The emf of the battry, E = 2 V
The resistance of a bulb, R = 16 ohms
We need to find the power delivered to the bulb. We know that, the formula for the power delivered is given by :

So, 0.25 W power is delivered to the bulb.
Answer:
The fraction of its energy that it radiates every second is
.
Explanation:
Suppose Electromagnetic radiation is emitted by accelerating charges. The rate at which energy is emitted from an accelerating charge that has charge q and acceleration a is given by

Given that,
Kinetic energy = 6.2 MeV
Radius = 0.500 m
We need to calculate the acceleration
Using formula of acceleration

Put the value into the formula

Put the value into the formula


We need to calculate the rate at which it emits energy because of its acceleration is

Put the value into the formula


The energy in ev/s


We need to calculate the fraction of its energy that it radiates every second


Hence, The fraction of its energy that it radiates every second is
.