<span>92.96 million mi..........</span>
Answer:
The paper focuses on the biology of stress and resilience and their biomarkers in humans from the system science perspective. A stressor pushes the physiological system away from its baseline state toward a lower utility state. The physiological system may return toward the original state in one attractor basin but may be shifted to a state in another, lower utility attractor basin. While some physiological changes induced by stressors may benefit health, there is often a chronic wear and tear cost due to implementing changes to enable the return of the system to its baseline state and maintain itself in the high utility baseline attractor basin following repeated perturbations. This cost, also called allostatic load, is the utility reduction associated with both a change in state and with alterations in the attractor basin that affect system responses following future perturbations. This added cost can increase the time course of the return to baseline or the likelihood of moving into a different attractor basin following a perturbation. Opposite to this is the system's resilience which influences its ability to return to the high utility attractor basin following a perturbation by increasing the likelihood and/or speed of returning to the baseline state following a stressor. This review paper is a qualitative systematic review; it covers areas most relevant for moving the stress and resilience field forward from a more quantitative and neuroscientific perspective.
Explanation:
More sales of traditional, large cars are the most likely consequence of falling petroleum prices.
<h3>Explanation</h3>
Since the majority of conventional, large cars employ combustion engines, these engines need petroleum fuel to operate.
As a result, <em>Choice C—more sales of conventional, large cars</em>—is one of the effects of dropping oil prices that is most likely to occur.
Learn more about petroleum here brainly.com/question/21518946
#SPJ10
Answer:
it sets consistent prices to achieve sustainability
<h2>Answer:</h2>
<h2>Explanation:</h2>
First, let's refer to the distance formula:
, where d is distance, v is velocity or speed and t is time.
Now, let's find the distance covered by each individual speed that the car had:
<h3>1. Speed 1.</h3>
In order to use the formula, we need to convert minutes into hours since the speed is given in km/h.
21.1 min/60= 0.35 h.
Now, apply the distance formula.
d=(0.35h)*(86.8km/h)= 30.38 km.
<h3>2. Speed 2.</h3>
Convert minutes to hours again and do the same calculations.
10.6min/60=0.18h
d=(0.18h)*(106km/h)= 19.08 km.
<h3>3. Speed 3.</h3>
36.5min/60= 0.61h
d=(0.61h)*(30.9km/h)= 18.85 km.
<h3>4. Obtain the total distance.</h3>
The total distance must be given by the addition of all individual distances traveled by the car on each speed:
Total distance= 30.38 km + 19.08 km + 18.85 km= 68.31 km.