2.258625 *10²³ oxygen atoms will be produced.
<h3><u>Explanation:</u></h3>
Decomposition reaction is defined as the type of reaction where one single reactant breaks to produce more than one product only by means of heat or other external factor.
Formula of magnesium oxide = MgO.
The molecular mass of magnesium oxide = 24 +16= 40.
So in 40 grams of magnesium oxide, number of molecules is 6.023 * 10²³.
So in 15 grams of magnesium oxide,, number of molecules is 6.023 *1023 * 15/40 = 2.258625 *10²³.
From one molecule of magnesium oxide, one oxide atom will be produced.
So number of oxide atoms with 100% yeild = 2.258625 *10²³
Answer:
A flame test could help by seeing what things it could catch on fire from or the things that could happen with acids etc. I would test the medicine by asking someone who has had it in their life, asking doctors or I would maybe use it myself maybe. (I don’t know about c, sooo sorry)
Answer:
True
Explanation:
In an uncompetitive inhibition, initially the substrate [S] binds to the active site of the enzyme [E] and forms an enzyme-substrate activated complex [ES].
The inhibitor molecule then binds to the enzyme- substrate complex [ES], resulting in the formation of [ESI] complex, thereby inhibiting the reaction.
This inhibition is called uncompetitive because the inhibitor does not compete with the substrate to bind on the active site of the enzyme.
Therefore, in an uncompetitive inhibition, the inhibitor molecule can not bind on the active site of the enzyme directly. The inhibitor can only bind to the enzyme-substrate complex formed.
Answer: a. +2, cation and magnesium ion .
b. -1, anion, chloride
c. -2, anion, oxide
d. +1. cation , potassium ion
Explanation:
When an atom accepts an electron negative charge is created on atom and is called as anion.
When atom loses an electron positive charge is created on atom and is called as cation.
Magnesium (Mg) with atomic number of 12 has electronic configuration of 2,8,2 and thus it can lose 2 electrons to form
cation and becomes magnesium ion.
Chlorine (Cl) with atomic number of 17 has electronic configuration of 2,8,7 and thus it can gain 1 electron to form
anion and becomes chloride.
Oxygen (O) with atomic number of 8 has electronic configuration of 2,6 and thus it can gain 2 electrons to form
anion and becomes oxide.
Potassium (K) with atomic number of 19 has electronic configuration of 2,8,8,1 and thus it can lose 1 electron to form
cation and becomes potassium ion.
Taking into account the reaction stoichiometry, 102 grams of Al₂O₃ are formed when 48 grams of O₂ react.
<h3>Reaction stoichiometry</h3>
In first place, the balanced reaction is:
4 Al + 3 O₂ → 2 Al₂O₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- Al: 4 moles
- O₂: 3 moles
- Al₂O₃: 2 moles
The molar mass of the compounds is:
- Al: 27 g/mole
- O₂: 32 g/mole
- Al₂O₃: 102 g/mole
Then, by reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
- Al: 4 moles ×27 g/mole= 108 grams
- O₂: 3 moles ×32 g/mole= 96 grams
- Al₂O₃: 2 moles ×102 g/mole= 204 grams
<h3>Mass of Al₂O₃ formed</h3>
The following rule of three can be applied: if by reaction stoichiometry 96 grams of O₂ form 204 grams of Al₂O₃, 48 grams of O₂ form how much mass of Al₂O₃?

<u><em>mass of Al₂O₃= 102 grams</em></u>
Finally, 102 grams of Al₂O₃ are formed when 48 grams of O₂ react.
Learn more about the reaction stoichiometry:
brainly.com/question/24741074
brainly.com/question/24653699
#SPJ1