Answer: (2) releases 2260 J/g of heat energy
Explanation:
Latent heat of vaporization is the amount of heat required to convert 1 mole of liquid to gas at atmospheric pressure.
Latent heat of condensation is energy released when 1 mole of vapor condenses to form liquid droplets.
The temperature does not change during this process, so heat released goes into changing the state of the substance, thus it is called latent which means hidden. The energy released in this process is same in magnitude as latent heat of vaporization. The heat of condensation of water vapour is about 2,260 J/g.
Answer:
6) λ = 0.84 × 10⁻⁸ m
7) λ = 0.84 × 10⁻⁶ m
Explanation:
6) Given data:
Wavelength of photon = ?
Frequency of photon = 3.56 × 10¹⁶ Hz
Solution:
Formula:
Speed of radiation = frequency × wavelength
c = speed of wave = 3×10⁸ m/s
by putting values,
3×10⁸ m/s = 3.56 × 10¹⁶ Hz × λ
λ = 3×10⁸ m/s / 3.56 × 10¹⁶ s⁻¹
λ = 0.84 × 10⁻⁸ m
7) Given data:
Wavelength of photon = ?
Frequency of photon = 6.15 × 10¹⁴ Hz
Solution:
Formula:
Speed of radiation = frequency × wavelength
c = speed of wave = 3×10⁸ m/s
by putting values,
3×10⁸ m/s = 6.15 × 10¹⁴ Hz × λ
λ = 3×10⁸ m/s / 6.15 × 10¹⁴ Hz s⁻¹
λ = 0.84 × 10⁻⁶ m
Answer:
64567000000 nanolitres
Explanation:
Base 10 decimal system: 1 milli = 1000000 nano
We simply multiply 64,567 millilitres by 1000000 to get our number in nanolitres:
64567(1000000) = 64567000000 nanolitres
Answer:
2 C2H2 + 5 O ---> 4 CO2 + 2 H2O
Explanation:
combustion reactions always end with CO2 + H2O
and you can use this website to balance out equations when you're stuck
https://en.intl.chemicalaid.com/tools/equationbalancer.php?equation=C2H2+%2B+O2+%3D+CO2+%2B+H2O