Answer:
b. Thermal energy will flow from your hand to the snowball.
Explanation:
Initial speed of the train = 7 m/s
Final speed of the train = 17 m/s
Change of speed of the train = (17 - 7) m/s
= 10 m/s
Time taken for the change of the speed of the train = 120 s
Then
Acceleration of the train = Change of speed of the train/Time taken for the change of speed
= 10/120 m/s^2
= 1/12 m/s^2
= 0.083 m/s^2
So the acceleration of the train is 1/12 meter per second square or 0.083 m/s^2. I hope this is the answer you were looking for.
Answer:
Explanation:
The star is revolving the black hole like earth revolves around the sun .so time period of rotation T is given by the following relation
T² =
, R is distance between black hole and star , M is mass of black hole
Given T = 4.8 hours
4.8² = 
Using the same equation for earth sun system
24² =
, Ms is mass of the sun and 50R is distance between the sun and the earth .
Dividing the equation
= 
= 2x 10⁻⁴
B: Gravity.
The force of gravity will pull the car down the hill. The weight/mass of the car also helps this.
Answer:
4.8 m/s
Explanation:
When she catches the train,
- They will have travelled the same distance.and
- Their speeds will be equal
The formula for the distance covered by the train is
d = ½at² = ½ × 0.40t² = 0.20t²
The passenger starts running at a constant speed 6 s later, so her formula is
d = v(t - 6.0)
The passenger and the train will have covered the same distance when she has caught it, so
(1) 0.20t² = v(t - 6.0)
The speed of the train is
v = at = 0.40t
The speed of the passenger is v.
(2) 0.40t = v
Substitute (2) into (1)
0.20t² = 0.40t(t - 6.0) = 0.40t² - 2.4 t
Subtract 0.20t² from each side
0.20t² - 2.4t = 0
Factor the quadratic
t(0.20t - 2.4) = 0
Apply the zero-product rule
t =0 0.20t - 2.4 = 0
0.20t = 2.4
(3) t = 12
We reject t = 0 s.
Substitute (3) into (2)
0.40 × 12 = v
v = 4.8 m/s
The slowest constant speed at which she can run and catch the train is 4.8 m/s.
A plot of distance vs time shows that she will catch the train 6 s after starting. Both she and the train will have travelled 28.8 m. Her average speed is 28.8 m/6 s = 4.8 m/s.